The T_D Axiom in a Pointfree Setting

Anneliese Schauerte and John Frith

University of Cape Town

38th Summer Topology Conference, Coimbra, 8 - 12 July 2024

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We are indebted to:

[BBAP] B. Banaschewski and A. Pultr, "Pointfree aspects of the T_D axiom of classical topology," Quaest. Math. 33(3), 269 - 385, 2010.

[ArrSua] I. Arrieta and A. Suarez, "The coframe of *D*-sublocales of a locale and the T_D -duality," Top. Appl. 291, 2021.

Outline of this talk

The frame setting: tools that work well for partial frames The space setting: T_D partial spaces The adjunction Concluding remarks

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Partial frames are:

- meet-semilattices, where
- not all subsets need have joins.

A selection function, S, specifies, for all meet-semilattices, certain subsets under consideration, which we call the "designated" ones; an S-frame then must have joins of (at least) all such subsets and binary meet must distribute over these.

S-frame maps preserve finite meets and designated joins; and, in particular, the top and bottom elements.

The category S**Frm** has objects S-frames and arrows S-frame maps.

Throughout this talk, L refers to an arbitrary S-frame. The selection function S must satisfy some axioms, which I will not discuss in any detail here. One of them, for example, states that all finite subsets are designated.

э

ヘロン 人間 とくほ とくほう

Instead, here are the examples we have in mind:

Examples

- 1. If all joins are specified, we are have the notion of a frame.
- 2. If countable joins are specified, we have the notion of a σ -frame.
- 3. If joins of subsets with cardinality less than some (regular) cardinal κ are specified, we have the notion of a κ -frame.
- 4. If only finite joins are specified, we have the notion of a bounded distributive lattice.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Partial spaces are to partial frames what topological spaces are to frames.

An *S*-space is a pair (X, OX) where $OX \subseteq \mathcal{P}X$ and OX is closed under finite intersection and designated union. We say $f : X \to Y$ is continuous if, for each $U \in OY$, $f^{-1}(U) \in OX$. The category *S***Top** has objects *S*-spaces and arrows continuous functions.

The categories *S***Frm** and *S***Top** are adjoint on the right, using the open set functor and the spectrum functor. The latter uses $\Sigma L = hom(L, 2)$ as points.

< 日 > < 同 > < 回 > < 回 > < □ > <

Linked pairs and slicing points

Suppose *a* and *b* are elements of an *S*-frame *L*.

Definition

We write a < b if a < b and $a \le x \le b$ implies x = a or x = b. We call such a < b a linked pair.

Suppose a < b is a linked pair in an S-frame L.

- For all $x \in L$, $x \land a = x \land b \iff x \lor a \neq x \lor b$.
- The map $\lambda : L \to \mathbf{2}$ by $\lambda(x) = \mathbf{0} \iff x \land a = x \land b$ is an S-point.
- This map can equivalently be given by $\lambda(x) = 1 \iff x \lor a = x \lor b$.
- This λ is the only S-point of L with $\lambda(a) = 0$ and $\lambda(b) = 1$.

Definition

We call an S-point ξ of L a slicing point if there exists a linked pair $a \le b$ with $\xi(a) = 0$ and $\xi(b) = 1$.

Definition

We call $h: L \to M$ a *D*-homomorphism if: whenever ξ is a slicing point of *M*, then $\xi \circ h$ is a slicing point of *L*.

In the full frame context, these are the *D*-homomorphisms of [BBAP]; those whose right adjoints send covered primes to covered primes.

A point is a *D*-homomorphism iff it is a slicing point.

Free frames over partial frames

- $\mathcal{H}_{\mathcal{S}}L$ is the free frame over *L*. It is a full frame.
- It consists of all S-ideals of L. The principal ones generate it.
- The map ↓: L → H_SL has the property that every S-frame map from L to a full frame factors via this map.
- So there is a one-one correspondence between S-points of L and frame points of $\mathcal{H}_{S}L$.

- $a < b \iff \downarrow a < \downarrow b$
- If ξ is slicing, so is ρ ; but not conversely.

Congruence frames of partial frames

- $C_{S}L$ is the congruence frame of *L*. It is a full frame.
- It consists of all *S*-congruences on *L*. The closed and the open ones generate it.
- The map $\nabla : L \to C_S L$ has the property that every S-frame map from L to a full frame with complemented image factors via this map.
- So there is a one-one correspondence between S-points of L and frame points of $C_{S}L$.

- $a < b \iff \nabla_a < \nabla_b$.
- If ξ is slicing, so is γ ; but not conversely.

A B M A B M

Example

Let *L* be the σ -frame consisting of all countable subsets of \mathbb{R} with \mathbb{R} itself as top element.

Define $\xi : L \to 2$ by $\xi(A) = 0 \iff A$ is countable.

Then ξ is not slicing, since there is no countable subset of A of \mathbb{R} with $A < \mathbb{R}$.

Now let *K* be the σ -ideal consisting of all countable subsets of \mathbb{R} . Then the frame point ρ is given by $\rho(I) = 0 \iff I \subseteq K$, for all $I \in \mathcal{H}_S L$. Since *K* is a co-atom of $\mathcal{H}_S L$, ρ is indeed slicing.

The corresponding frame point $\gamma : C_S L \to 2$ is also slicing, because $\gamma(\bigcup \{\nabla_A : A \text{ is countable}\}) = 0$ and $\gamma(\nabla_{\mathbb{R}}) = 1$ and there is no congruence strictly between these two.

イロト イポト イヨト イヨト

Again, consider the σ -space (\mathbb{R} , $O\mathbb{R}$) where $O\mathbb{R}$ consists of all countable subsets of \mathbb{R} with \mathbb{R} itself as top element. Note:

All singleton sets are open. The σ -space is Hausdorff. Also $\overline{\{x\}} = \{x\}$. But the singleton sets are not closed.

Here $O\mathbb{R}$ is clearly spatial, but has no prime elements.

Conclusion: closures are not a useful tool in this context; neither are prime elements.

A D A D A D A

T_D partial spaces

Blanket assumption: all our partial spaces are S_0 ; that is, for $x \neq y$ there exists U open with $x \in U$ and $y \notin U$, or conversely.

Notation: $\xi_x : OX \to 2$ is given by $\xi_x(U) = 1 \iff x \in U$.

- U < V in $OX \iff U = V \setminus \{z\}$ for some $z \in X$.
- Every slicing point of OX is of the form ξ_x for some x.

Definition

For an S-space (X, OX)

- call x a T_D -point if there exists $V \in OX$ with $x \in V$ and $V \setminus \{x\} \in OX$,
- call (X, OX) a T_D space if all its points are T_D points.

Something similar:

"In T_D spaces, subspaces are correctly represented by frame congruences." To be specific, if $Y \subseteq X$ and $E_Y = \{(U, V) \in OX \times OX : U \cap Y = V \cap Y\}$, then X is T_D iff $E_Y \neq E_Z$ for distinct $Y, Z \subseteq X$.

Something different:

In the classical case, T_D lies between T_0 and T_1 .

Example

The Finite Extended Sorgenfrey Line.

Let *S* designate finite subsets, so *S*-frames are bounded distributive lattices. Let $X = \mathbb{R}$ and *OX* consist of finite unions of intervals of the form $[a, b), [a, \infty), (-\infty, b)$. Here *OX* is Boolean, so normal and regular, (X, OX) is *S*₂ (Hausdorff) and (vacuously) compact; yet (X, OX) is not *T*_D. In any S-space (X, OX):

- For all x, x is a T_D point of X iff ξ_x is a slicing point of OX.
- So X is T_D iff ξ_x is a slicing point of OX, for all $x \in X$.
- If X is T_D , then ξ_x slices every linked pair W < Z in OX for which $Z = W \cup \{x\}$, and ξ_x is the only slicing point to do so.

Compare [BBAP] for T_0 topological spaces:

x is a T_D point of *X* iff $(X \setminus \overline{\{x\}}) \cup \{x\}$ is open.

A (10) A (10)

The adjunction

Definition

We denote by S**Top**_D the category with objects all S-spaces that are T_D and morphisms all continuous functions between them. We denote by S**Frm**_D the category with objects all S-frames and morphisms all D-homomorphisms between them.

We restrict the usual open set functor $O : STop \rightarrow SFrm$.

We need that, if $f : X \to Y$ is a continuous function between T_D spaces, then $Of : OY \to OX$ is a *D*-homomorphism. This follows because $\xi_X \circ Of = \xi_{f(X)}$.

(日)

The T_D -spectrum functor uses ΦL , all slicing points of L, instead of ΣL , all points of L. We regard ΦL as subspace of ΣL . For morphisms: $\Phi h(\xi) = \xi \circ h$ provides a continuous function $\Phi M \to \Phi L$.

- $\delta_L : L \to O\Phi L$ by $\delta_L(a) = \Phi_a = \{\xi \in \Phi L : \xi(a) = 1\}$ is a *D*-homomorphism.
- For a T_D space X, $\pi_X : X \to \Phi OX$ by $\pi_X(x) = \xi_x$, is a homeomorphism.
- The open set and T_D spectrum functors are adjoint on the right.

T_D spatiality of partial frames

Definition

(a) An *S*-frame *L* is called T_D spatial if $\delta_L : L \to O\Phi L$ is an isomorphism. (b) An *S*-frame *L* is called sharp if each point of *L* is slicing; that is, $\Phi L = \Sigma L$. (c) An *S*-frame *L* is called strongly T_D spatial if it is sharp and spatial.

We characterize each of these.

Proposition

The following are equivalent for an S-frame L.

- L is T_D-spatial.
- Whenever s < t in L, there is a slicing point ρ of L with $\rho(s) = 0$ and $\rho(t) = 1$.
- Solution Every proper interval [s, t] in *L* contains a linked pair; that is, there exists a < b with $s \le a < b \le t$.

Proposition

The following are equivalent for an S-frame L.

- L is sharp.
- **(a)** Every S-frame map $h: L \to M$ to an S-frame M is a D-homomorphism.
- Severy onto S-frame map $h: L \to M$ to an S-frame M is a D-homomorphism.

[BBAP] shows that every frame map with regular domain is a D-homomorphism; in our terminology, regular frames are sharp. The corresponding result for S-frames does not hold:

Example

Let \mathcal{L} consist of the countable and cocountable subsets of \mathbb{R} , and let S designate the countable subsets. The σ -frame \mathcal{L} is Boolean, hence regular. However, the map $\xi : \mathcal{L} \to 2$ given by $\xi(A) = 0 \iff A$ is countable, is a σ -frame point that is not slicing, since there are no subsets C, D of \mathbb{R} with C countable, D cocountable and C < D.

く ロ と く 雪 と く 目 と く 目

Proposition

The following are equivalent for an S-frame L.

- (a) *L* is strongly T_D spatial.
- **(a)** $L \cong OY$ for some S-space Y that is T_D and sober.
 - J is spatial and ΣL is a $T_D S$ -space.

A I > A = A A

T_D and sober partial spaces

Definition

For S-spaces A and B we consider the relation R(A, B):

- A is a proper subspace of B
- the identical embedding $j : A \rightarrow B$ makes $Oj : OB \rightarrow OA$ an isomorphism

Proposition

Let X be an S-space.

- **a** X is sober iff there is no Y with R(X, Y)
 - X is T_D iff there is no Y with R(Y, X)

A (10) A (10)