On commutators acting on some Fréchet spaces over non-Archimedean fields

Wiesław Śliwa and Agnieszka Ziemkowska-Siwek

University of Rzeszów, Poznań University of Technology, Poland

38th Summer Conference on Topology and its Applications 8-12 July 2024, Coimbra

Preliminaries

Let \mathbb{K} be a field. A map $|\cdot| : \mathbb{K} \to [0,\infty)$ is a valuation if for all $\lambda, \mu \in \mathbb{K}$ we have the following: (1) $|\lambda| = 0$ if and only if $\lambda = 0$, (2) $|\lambda\mu| = |\lambda||\mu|$, (3) $|\lambda + \mu| \le |\lambda| + |\mu|$.

Preliminaries

Let \mathbb{K} be a field. A map $|\cdot| : \mathbb{K} \to [0, \infty)$ is a valuation if for all $\lambda, \mu \in \mathbb{K}$ we have the following: (1) $|\lambda| = 0$ if and only if $\lambda = 0$, (2) $|\lambda\mu| = |\lambda||\mu|$, (3) $|\lambda + \mu| \le |\lambda| + |\mu|$.

If $(\mathbb{K},|\cdot|)$ is a valued field then there are only two possibilities. Either

- $\mathbb K$ is isomorphic to a subfield of $\mathbb C$ and $|\cdot|$ is equivalent with the ordinary absolute value function or

- the valuation $|\cdot|$ is non-Archimedean i.e. it satisfies the strong triangle inequality

$$|\lambda+\mu| \leq \max\{|\lambda|,|\mu|\}$$

for all $\lambda, \mu \in \mathbb{K}$.

Example: $(\mathbb{Q}_p, |\cdot|_p)$ - the field of p-adic numbers, where p is a prime number. The p-adic valuation $|\cdot|_p$ is determined by

$$|n/m|_p := p^{s-k}, n, m \in \mathbb{N},$$

where k and s are number of factors p in n and m, respectively. The field $(\mathbb{Q}_p, |\cdot|_p)$ is locally compact. We will always assume that $|\cdot|$ is *non-trivial* i.e., that there is a $\lambda_0 \in \mathbb{K}$ such that $|\lambda_0| \notin \{0, 1\}$.

We will always assume that $|\cdot|$ is *non-trivial* i.e., that there is a $\lambda_0 \in \mathbb{K}$ such that $|\lambda_0| \notin \{0, 1\}$.

All linear spaces are over a non-archimedean non-trivially valued field $(\mathbb{K}, |\cdot|)$ which is complete under the metric induced by the valuation $|\cdot|$.

By a *seminorm* on a linear space *E* we mean a function $p: E \to [0, \infty)$ such that $p(\alpha x) = |\alpha|p(x)$ for all $\alpha \in \mathbb{K}$, $x \in E$ and $p(x+y) \leq max\{p(x), p(y)\}$ for all $x, y \in E$.

By a *seminorm* on a linear space *E* we mean a function $p: E \to [0, \infty)$ such that $p(\alpha x) = |\alpha|p(x)$ for all $\alpha \in \mathbb{K}$, $x \in E$ and $p(x+y) \leq max\{p(x), p(y)\}$ for all $x, y \in E$.

A Fréchet space is a complete metrizable locally convex space.

A series $\sum_{n=1}^{\infty} x_n$ in a Fréchet space *E* is convergent in *E* if and only if $\lim x_n = 0$.

By an operator on a lcs E we mean any continuous linear map on E. For any operator T on a Fréchet space E with a Schauder basis (e_n) there exists an infinite matrix $(t_{i,j})_{i,j\in\mathbb{N}}$ of scalars from \mathbb{K} such that $Te_i = \sum_{i=1}^{\infty} t_{i,j}e_i$ for any $j \in \mathbb{N}$. Then

$$Tx = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} t_{i,j} x_j \right) e_i \text{ for any } x = \sum_{j=1}^{\infty} x_j e_j \in E.$$

Wiesław Śliwa and Agnieszka Ziemkowska-Siwek COMMUTATORS

Let $B_{\mathbb{K}}$ be the closed unit ball of \mathbb{K} (i.e. $B_{\mathbb{K}} = \{ \alpha \in \mathbb{K} : |\alpha| \le 1. \}$ A subset A of a lcs E is absolutely convex if $\alpha x + \beta y \in A$ for all $\alpha, \beta \in B_{\mathbb{K}}$ and $x, y \in A$. Let $B_{\mathbb{K}}$ be the closed unit ball of \mathbb{K} (i.e. $B_{\mathbb{K}} = \{ \alpha \in \mathbb{K} : |\alpha| \le 1. \}$ A subset A of a lcs E is absolutely convex if $\alpha x + \beta y \in A$ for all $\alpha, \beta \in B_{\mathbb{K}}$ and $x, y \in A$.

A subset *B* of a lcs *E* is *compactoid* (or a *compactoid*) if for each neighbourhood *U* of 0 in *E* there exists a finite subset *A* of *E* such that $B \subset U + coA$, where *coA* is the absolutely convex hull of *A* i.e.

 $coA = \{\sum_{i=1}^{n} \alpha_i a_i : n \in \mathbb{N}, \alpha_1, \dots, \alpha_n \in B_{\mathbb{K}}, a_1, \dots, a_n \in A\}$

Let $B_{\mathbb{K}}$ be the closed unit ball of \mathbb{K} (i.e. $B_{\mathbb{K}} = \{ \alpha \in \mathbb{K} : |\alpha| \le 1. \}$ A subset A of a lcs E is absolutely convex if $\alpha x + \beta y \in A$ for all $\alpha, \beta \in B_{\mathbb{K}}$ and $x, y \in A$.

A subset *B* of a lcs *E* is *compactoid* (or a *compactoid*) if for each neighbourhood *U* of 0 in *E* there exists a finite subset *A* of *E* such that $B \subset U + coA$, where *coA* is the absolutely convex hull of *A* i.e.

$$\mathsf{co}\mathsf{A} = \{\sum_{i=1}^{n} \alpha_i \mathsf{a}_i : \mathsf{n} \in \mathbb{N}, \alpha_1, \dots, \alpha_n \in \mathsf{B}_{\mathbb{K}}, \mathsf{a}_1, \dots, \mathsf{a}_n \in \mathsf{A}\}\$$

If \mathbb{K} is locally compact, then a subset *B* of a lcs *E* is compactoid if and only if it is precompact.

Let *E* and *F* be Fréchet spaces. A continous linear map $T: E \to F$ is *compactoid* if for some neighbourhood *U* of zero in *E* the set T(U) is compactoid in *F*.

Preliminaries

Let *E* and *F* be Fréchet spaces. A continous linear map $T: E \to F$ is *compactoid* if for some neighbourhood *U* of zero in *E* the set T(U) is compactoid in *F*. For any seminorm *p* on a lcs *E* the map $\overline{p}: E/\ker p \to [0,\infty)x + \ker p \to p(x)$ is a norm on $E_p = E/\ker p$. Let *E* and *F* be Fréchet spaces. A continous linear map $T: E \to F$ is *compactoid* if for some neighbourhood *U* of zero in *E* the set T(U) is compactoid in *F*. For any seminorm *p* on a lcs *E* the map $\overline{p}: E/\ker p \to [0,\infty)x + \ker p \to p(x)$ is a norm on $E_p = E/\ker p$. A lcs *E* is *nuclear* if for every continuous seminorm *p* on *E* there exists a continuous seminorm *q* on *E* with $q \ge p$ such that the map

$$\varphi_{p,q}: (E_q, \overline{q}) \to (E_p, \overline{p}), x + \ker q \to x + \ker p$$

is compactoid.

A commutator of a pair of elements S and T in the algebra L(E) of all operators on a lcs E is given by

$$[S,T] := ST - TS.$$

An infinite matrix $A = (a_{n,k})$ of real numbers is a Köthe matrix if $0 < a_{n,k} \le a_{n,k+1}$ for all $n, k \in \mathbb{N}$.

Wiesław Śliwa and Agnieszka Ziemkowska-Siwek COMMUTATORS

An infinite matrix $A = (a_{n,k})$ of real numbers is a Köthe matrix if $0 < a_{n,k} \le a_{n,k+1}$ for all $n, k \in \mathbb{N}$.

Let A be a Köthe matrix. The space $K(A) = \{(x_n) \subset \mathbb{K} : \lim_{n \to \infty} |x_n| a_{n,k} = 0 \text{ for every } k \in \mathbb{N}\}$ with the base (p_k) of norms, where

$$p_k((x_n)) = \max_n |x_n| a_{n,k}, k \in \mathbb{N},$$

is a Fréchet space; it is called a Köthe space. The sequence (e_j) , where $e_j = (\delta_{j,n})$, is an unconditional Schauder basis of K(A). A Köthe space K(A) is nuclear if and only if for any $i \in \mathbb{N}$ there exists $j \in \mathbb{N}$ such that

$$\lim_n \frac{a_{n,i}}{a_{n,j}} = 0.$$

Wiesław Śliwa and Agnieszka Ziemkowska-Siwek COMMUTATORS

Let Γ be the family of all non-decreasing sequences $a = (a_n)$ of positive real numbers with $\lim_{n \to \infty} a_n = \infty$. Let $a = (a_n) \in \Gamma$.

Let Γ be the family of all non-decreasing sequences $a = (a_n)$ of positive real numbers with $\lim_{n \to \infty} a_n = \infty$. Let $a = (a_n) \in \Gamma$.

Then the following Köthe spaces are the *power series spaces*: • $A_1(a) = K(B)$ with $B = (b_{n,k}), b_{n,k} = \exp(-a_n/k)$; • $A_{\infty}(a) = K(B)$ with $B = (b_{n,k}), b_{n,k} = \exp(ka_n)$. (of *finite type* and *infinite type*, respectively). For $r \in (-\infty, \infty]$ we denote by Λ_r the family of all strictly increasing sequences $(r_k) \subset \mathbb{R}$ with $\lim_k r_k = r$ such that $r_k r_j > 0$ for all $k, j \in \mathbb{N}$

Wiesław Śliwa and Agnieszka Ziemkowska-Siwek COMMUTATORS

For $r \in (-\infty, \infty]$ we denote by Λ_r the family of all strictly increasing sequences $(r_k) \subset \mathbb{R}$ with $\lim_k r_k = r$ such that $r_k r_j > 0$ for all $k, j \in \mathbb{N}$ and by Φ_c the family of all strictly increasing odd functions $f : \mathbb{R} \to \mathbb{R}$ such that f is convex in $[0, \infty)$. For $r \in (-\infty, \infty]$ we denote by Λ_r the family of all strictly increasing sequences $(r_k) \subset \mathbb{R}$ with $\lim_k r_k = r$ such that $r_k r_j > 0$ for all $k, j \in \mathbb{N}$ and by Φ_c the family of all strictly increasing odd functions $f : \mathbb{R} \to \mathbb{R}$ such that f is convex in $[0, \infty)$.

Let
$$f \in \Phi_c$$
, $a = (a_n) \in \Gamma$, $r \in (-\infty, \infty]$ and $(r_k) \in \Lambda_r$.

For $r \in (-\infty, \infty]$ we denote by Λ_r the family of all strictly increasing sequences $(r_k) \subset \mathbb{R}$ with $\lim_k r_k = r$ such that $r_k r_j > 0$ for all $k, j \in \mathbb{N}$ and by Φ_c the family of all strictly increasing odd functions $f : \mathbb{R} \to \mathbb{R}$ such that f is convex in $[0, \infty)$.

Let
$$f \in \Phi_c$$
, $a = (a_n) \in \Gamma$, $r \in (-\infty, \infty]$ and $(r_k) \in \Lambda_r$.

Then the following Köthe space is said to be a *generalized power series space*

$$D_f(a,r) = K(B)$$
 with $B = (b_{n,k}), b_{n,k} = \exp(f(r_k a_n)).$

Lemma A

Let $f \in \Phi_c$.

$$(1) f(u_1v_2) - f(u_2v_2) \leq f(u_1v_1) - f(u_2v_1)$$

for $u_1, u_2, v_1, v_2 \in \mathbb{R}$ with $0 \le v_1 \le v_2$ and $u_1 \le u_2 \le 0$ or $0 \le u_1 \le u_2$;

$$(2) f(x) - f(y) \leq f(x - y)$$

for all $x, y \in \mathbb{R}$ with $x \leq y$ and $xy \geq 0$;

$$(3) f(x) - f(y) \leq f(|x| + |y|) \text{ for all } x, y \in \mathbb{R}.$$

Results

Proposition 1

Let $D_f(a, r)$ be a generalized power series space. (1) The left shift map on $D_f(a, r)$

 $L: D_f(a,r) \rightarrow D_f(a,r), (x_1,x_2,x_3,\ldots) \rightarrow (x_2,x_3,x_4,\ldots)$

is well defined, linear and continuous if and only if (1) r > 0 or (2) r = 0 and $\sup_n[a_{n+1}/a_n] < \infty$ or (3) r < 0 and $\lim_n[a_{n+1}/a_n] = 1$. (II) The right shift map on $D_f(a, r)$

 $R: D_f(a,r) \rightarrow D_f(a,r), (x_1,x_2,x_3,\ldots) \rightarrow (0,x_1,x_2,\ldots)$

is well defined, linear and continuous if and only if (1) $r = \infty$ and $\sup_n[a_{n+1}/a_n] < \infty$ or (2) $0 < r < \infty$ and $\lim_n[a_{n+1}/a_n] = 1$ or (3) $r \le 0$.

Let $D_f(a, r)$ be a generalized power series space. Assume that

$$(*) \ \forall k \in \mathbb{N} \ \exists p \in \mathbb{N} \ \forall s \in \mathbb{N} \ \exists t \in \mathbb{N}$$
:

$$\sup_{n,m,\nu\in\mathbb{N}} [f(r_k a_{n+\nu}) - f(r_p a_\nu) + f(r_s a_m) - f(r_t a_{m+n})] < \infty.$$

Then every operator on $D_f(a, r)$ is a commutator.

Proof.

Let $D_f(a, r)$ be a generalized power series space. Assume that $\sup_n[a_{2n}/a_n] < \infty$ and $r \in \{0, \infty\}$. Then every operator on $D_f(a, r)$ is a commutator.

Proof.

Let $D_f(a, r)$ be a generalized power series space. Assume that $\sup_n[a_{2n}/a_n] < \infty$ and $r \in \{0, \infty\}$. Then every operator on $D_f(a, r)$ is a commutator.

Proof.

Corollary 4

Let $A_r(a)$ be a power series space. If $\sup_n[a_{2n}/a_n] < \infty$, then every operator on $A_r(a)$ is a commutator. A function $f \in \Phi_c$ is said to be *rapidly increasing if*

$$\lim_{t\to\infty} [f(ct)/f(t)] = \infty \text{ for any } c > 1.$$

Theorem 5

Let $D_f(a, r)$ be a generalized power series space. Assume that f is rapidly increasing, $\lim_n [a_{2n}/a_n] = 1$ and $r \in \mathbb{R}$ with $r \neq 0$. Then every operator on $D_f(a, r)$ is a commutator.

Example

Let
$$b \in \Gamma$$
 with $\lim_n [b_{n+1}/b_n] = 1$ (e.g. $b_n = n^c$ for $n \in \mathbb{N}, c > 0$). Put $a_n = b_k$ for $2^{k-1} \le n < 2^k, k \in \mathbb{N}$. Then $a = (a_n) \in \Gamma$ and $\lim_n [a_{2n}/a_n] = 1$.

э

< ロ > < 同 > < 三 > < 三 >

Proposition 6

Let $D_f(a, r)$ be a generalized power series space. Assume that (1) $\sup_n[a_{n+1}/a_n] < \infty$ and $r \in \{0, \infty\}$ or (2) $\lim_n[a_{n+1}/a_n] = 1$ and $r \in (\mathbb{R} \setminus \{0\})$. Then every diagonal operator on $D_f(a, r)$ is a commutator; in particular, the identity operator I on $D_f(a, r)$ is a commutator.

Let $D_f(a, r)$ be a generalized power series space with $\lim_n [a_{n+1}/a_n] = \infty$. Assume that an operator T on $D_f(a, r)$ is a commutator. Then T is bounded.

Corollary 8

Let $D_f(a, r)$ be a generalized power series space with $\lim_n [a_{n+1}/a_n] = \infty$. Then for any non-zero scalar α and any bounded operator T on $D_f(a, r)$, the operator $\alpha I + T$ is not a commutator. In particular, the identity operator I on $D_f(a, r)$ is not a commutator.

- Czyżak, A., Commutators on power series spaces, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 109(2015), 281-293.
- De Grande-De Kimpe, N., Non-archimedean Fréchet spaces generalizing spaces of analytic functions, Indag. Mathem., 44 (1982), 423-439.
- Perez-Garcia, C., Schikhof, W., Locally convex spaces over non-Archimedean valued fields, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2010.

Rooij, A.C.M. van – *Non-archimedean functional analysis*, Marcel Dekker, New York (1978).

- Śliwa, W., On non-archimedean generalized power series spaces, Contemporary Math., 596(2013), 281-291.
- Śliwa, W., Commutators on Banach spaces over non-Archimedean fields, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116(2022), 124.
- Śliwa, W.,Ziemkowska-Siwek A. Commutators on power series spaces over non-Archimedean fields, In: Amigó, J.M., Cánovas, M.J., López-Cerdá, M.A., López-Pellicer, M. (eds) Functional Analysis and Continuous Optimization. IMFACO 2022. Springer Proceedings in Mathematics and Statistics, 424, 261-270.
- Śliwa, W.,Ziemkowska-Siwek A. Commutators on some nuclear Fréchet spaces over non-Archimedean fields

Thank you for your attention.

Wiesław Śliwa and Agnieszka Ziemkowska-Siwek COMMUTATORS