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Structure of the talk

1. Saturated sets, pointfreely

2. Raney extensions

3. An application: exactness
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The classical duality

The classical pointfree versions of topological spaces are frames. A frame is a complete lattice
L where the distributivity law

(
∨
i

xi ) ∧ y =
∨
i

(xi ∧ y)

holds. Frames form the category Frm when equipped with maps which preserve arbitrary joins
and finite meets.

We have an adjunction

Frmop Top
pt

Ω

⊣

The fixpoints are the sober spaces on one side, and the spatial frames on the other. Sobriety is
an axiom stronger than T0 and weaker than T2.
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The TD approach

A space is TD if every singleton is locally closed (the intersection of an open and a closed set).

In [Banaschewski and Pultr, 2010], the TD axiom is shown to be, in a sense, dual to sobriety.
We have

• A space X is sober if and only if there can be no nontrivial subspace inclusion i : X ⊆ Y
such that Ω(i) is an isomorphism;

• A space X is TD if and only if there can be no nontrivial subspace inclusion i : Y ⊆ X
such that Ω(i) is an isomorphism.

In [Banaschewski and Pultr, 2010], an alternative approach to the classical one is introduced,
where to every frame L a TD spectrum ptD(L) is associated. The points are the covered
primes, i. e. those such that

∧
i xi = p implies xi = p for some i . On the frame side we have to

restrict the morphisms to d-morphisms, i. e. morphisms f such that f∗ preserves coveredness.

Theorem

There is an adjunction ptD : Frmop
D ⇆ Top, whose fixpoints are the D-spatial frames on one

side and the TD spaces on the other.
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Raney duality

Raney duality (see [Bezhanishvili and Harding, 2020]) enables us to faithfully represent all the
T0 spaces. The core intuition is that a T0 space can be completely recovered from the
embedding Ω(X ) ⊆ U(X ), as the space of completely join-prime elements.

A Raney algebra is a pair (L,D) where
• D is a completely distributive lattice generated by its completely join-prime elements;
• L ⊆ D is a frame embedding;
• L meet-generates D.

Morphisms of Raney algebras are complete lattice morphisms that respect the designated
frame. We call the category RA. For any space X , the pair (Ω(X ),U(X )) is a Raney algebra.
For a Raney algebra (L,D), one can define the topological space ptRA(L,D) of completely
join-prime elements of D.

Theorem

There is a dual adjunction ΩRA : Top ⇆ RAop : ptRA. The fixpoints are T0 spaces on one
side, and all Raney algebras on the other.
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Raney duality beyond points?

Raney duality has an issue: all Raney algebras are spatial. The obvious forgetful functor
RA → Frm only reaches the spatial frames; in other words: only spatial frames can be
extended to Raney algebras. But we would like to be able to extend any frame in such fashion.

The pair (ΩRA, ptRA) being an equivalence (in particular, essential surjectiveness of ptRA)
relies on there being enough completely join-primes in a Raney algebra. To do away with
points, we plan to use the following observation.

Observation

Even if we drop the constraint that in (L,D) the lattice D is generated by the completely
join-prime elements, the pair of functors (ΩRA, ptRA), suitably extended, is still well-defined,
and a dual adjunction...
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Exactness and strong exactness

For a frame L, we call a meet

• exact if
∧

i xi ∨ y =
∧

i (xi ∨ y) for all y ∈ L;

• strongly exact if xi → y = y implies
∧

i xi → y for all y ∈ L.

Strongly exact meets are precisely those meets that are preserved by any frame morphism. A
filter is (strongly) exact, abbreviated as (S)E, if it is closed under (strongly) exact meets. In
[Moshier et al., 2020], the following is proven.

Theorem

The collection FiltE(L) and FiltSE(L) of E and SE filters are both frames. There are also
isomorphisms FiltE(L) ∼= Sc(L) and FiltSE(L)

op ∼= So(L).
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Raney extensions

We define a Raney extension as a pair (L,C ) such that:
• C is a coframe;
• L ⊆ C is a frame embedding which preserves SE meets;
• L meet-generates C .

Observation

Routine calculations show that a Raney extension is a Raney algebra if and only if C is
join-generated by the completely join-prime elements.

Morphisms are defined as coframe maps that respect the designated frame. We call the
category Raney. The original dual equivalence by Raney can easily be extended to the
following.

Theorem

There is a dual adjunction ΩR : Top ⇆ Raneyop : ptR . The fixpoints are T0 spaces on one
side, and Raney algebras on the other.
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Raney extensions

Structures that amount to Raney extensions abound in the literature. The following are all
Raney extensions.

• The pair (Ω(X ),U(X )) for any space X .

• The pair (L,FiltSE(L)
op) for any frame L. Equivalently, this is the embedding

o : L ↪→ So(L).

• The pair (L,FiltE(L)
op) for any frame L. Equivalently, this is the embedding

c : L ↪→ Sc(L)
op.

• The pair (L, Lδ) for any pre-spatial frame L, where Lδ is the canonical extension of L as
defined in [Jakl, 2020],

• The pair (L,B(L)) for a subfit frame L, where B(−) is the Funayama construction (see,
for example, [Bezhanishvili et al., 2013]).
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Raney extensions

Every frame has the largest and the smallest Raney extension. In [Suarez, 2024a], the
following is shown.

Theorem

For any Raney extensions (L,C ), we have surjections

(L,FiltSE(L)
op)) ↠ (L,C ) ↠ (L,FiltE(L)

op).

This result shows that the structures So(L) and Sc(L)
op, well-studied in pointfree topology,

enjoy universal properties which are dual of one another.
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Raney extensions

What happens if we take the spectrum ptR of the two embedding in the theorem above?

Theorem

For any Raney extensions (L,C ), we have subspace inclusions

ptD(L) ⊆ ptR(L,C ) ⊆ pt(L),

where pt(L) is the classical spectrum of L, and ptD(L) its TD spectrum, as introduced in
[Banaschewski and Pultr, 2010].

This gives another sense in which the TD axiom is a mirror image of sobriety, apart from that
described in [Banaschewski and Pultr, 2010].
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Lifting of morphisms

Every Raney extension may be seen as a collection of filters of the base frame. In fact, we
have an adjunction

C Filt(L)op
↑L

∧⊣

where ↑Lc = {a ∈ L : x ≤ a}. This restricts to an isomorphism between C and some
subcolocale of Filt(L)op.

Theorem

A morphism f : L → M extends to a Raney morphism (L,F) → (M,G) if and only if
f −1(G ) ∈ F for all G ∈ G.
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Exact morphisms

We now show some results from [Suarez, 2024b] showing applications to exactness and the TD

duality. From the result we know that the assignment L 7→ (L,Sc(L)
op) is functorial precisely

for those morphisms such that preimages of exact filters are exact.

Explicitly, these are the
exact morphisms: we call a frame morphism f : L → M exact if for all exact meets

∧
i xi ∈ L

we have that
∧

i f (xi ) is exact and equals f (
∧

i xi ).

Proposition

A morphism f : L → M of frames extend to a frame morphism Sc(L) → Sc(M) if and only if it
is exact.

For a frame L, the following are all exact maps.

• The surjection corresponding to an open sublocale.

• The surjection corresponding to a closed sublocale.

• The surjection corresponding to a d-point.
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Exact morphisms: counterexamples
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Exact sublocales

For a frame L we call a sublocale exact if the corresponding surjection is exact.

Theorem

We have a chain of subcolocale inclusions

SE(L) ⊆ SD(L) ⊆ S(L),

where SD(L) is the collection of D-sublocales in [Arrieta and Suarez, 2021].

Not all d-morphisms are exact. See the first counterexample before.
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Exactness and the TD duality

Let us now look at the connection with TD duality. Restricting FrmD further, to FrmE ,does
not disrupt TD duality, while giving us functoriality of L 7→ Sc(L).

Lemma

If f : L → M is a d-morphism and M is TD-spatial, then f is exact.

Theorem

We have a commuting diagram as follows, where Sc : L 7→ (L,Sc(L)
op).

FrmE
op Raneyop

Top

Sc

ptD
ptR
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Raney as bringing together the sober and TD dualities

In fact, the Raney approach encompasses both the classical and the TD approaches to
pointfree topology. The following commutes.

FrmE
op Raneyop Frmop

Top

Sc

ptD
ptR

So

pt

In other words, the TD duality and the sober duality are both restrictions of Raney duality:
each frame is identified, respectively, with the smallest and the largest Raney extension on it.
In this sense, the sober duality and the TD duality are mirror images of one another.
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