Raney extensions as pointfree T_0 spaces

Anna Laura Suarez

University of Coimbra

9th of July, 2024

- 1. Saturated sets, pointfreely
- 2. Raney extensions
- 3. An application: exactness

The classical pointfree versions of topological spaces are *frames*. A frame is a complete lattice L where the distributivity law

$$(\bigvee_i x_i) \land y = \bigvee_i (x_i \land y)$$

holds. Frames form the category **Frm** when equipped with maps which preserve arbitrary joins and finite meets.

The classical pointfree versions of topological spaces are *frames*. A frame is a complete lattice L where the distributivity law

$$(\bigvee_i x_i) \land y = \bigvee_i (x_i \land y)$$

holds. Frames form the category **Frm** when equipped with maps which preserve arbitrary joins and finite meets. We have an adjunction

The fixpoints are the *sober* spaces on one side, and the *spatial* frames on the other. Sobriety is an axiom stronger than T_0 and weaker than T_2 .

A space is T_D if every singleton is locally closed (the intersection of an open and a closed set).

A space is T_D if every singleton is locally closed (the intersection of an open and a closed set). In [Banaschewski and Pultr, 2010], the T_D axiom is shown to be, in a sense, dual to sobriety. We have

- A space X is sober if and only if there can be no nontrivial subspace inclusion i : X ⊆ Y such that Ω(i) is an isomorphism;
- A space X is T_D if and only if there can be no nontrivial subspace inclusion i : Y ⊆ X such that Ω(i) is an isomorphism.

A space is T_D if every singleton is locally closed (the intersection of an open and a closed set). In [Banaschewski and Pultr, 2010], the T_D axiom is shown to be, in a sense, dual to sobriety. We have

- A space X is sober if and only if there can be no nontrivial subspace inclusion i : X ⊆ Y such that Ω(i) is an isomorphism;
- A space X is T_D if and only if there can be no nontrivial subspace inclusion i : Y ⊆ X such that Ω(i) is an isomorphism.

In [Banaschewski and Pultr, 2010], an alternative approach to the classical one is introduced, where to every frame L a T_D spectrum $pt_D(L)$ is associated. The points are the *covered* primes, i. e. those such that $\bigwedge_i x_i = p$ implies $x_i = p$ for some *i*.

A space is T_D if every singleton is locally closed (the intersection of an open and a closed set). In [Banaschewski and Pultr, 2010], the T_D axiom is shown to be, in a sense, dual to sobriety. We have

- A space X is sober if and only if there can be no nontrivial subspace inclusion i : X ⊆ Y such that Ω(i) is an isomorphism;
- A space X is T_D if and only if there can be no nontrivial subspace inclusion i : Y ⊆ X such that Ω(i) is an isomorphism.

In [Banaschewski and Pultr, 2010], an alternative approach to the classical one is introduced, where to every frame L a T_D spectrum $pt_D(L)$ is associated. The points are the *covered* primes, i. e. those such that $\bigwedge_i x_i = p$ implies $x_i = p$ for some i. On the frame side we have to restrict the morphisms to *d*-morphisms, i. e. morphisms f such that f_* preserves coveredness.

Theorem

There is an adjunction $pt_D : \mathbf{Frm}_D^{op} \hookrightarrow \mathbf{Top}$, whose fixpoints are the D-spatial frames on one side and the T_D spaces on the other.

Raney duality (see [Bezhanishvili and Harding, 2020]) enables us to faithfully represent all the T_0 spaces. The core intuition is that a T_0 space can be completely recovered from the embedding $\Omega(X) \subseteq U(X)$, as the space of completely join-prime elements.

Raney duality (see [Bezhanishvili and Harding, 2020]) enables us to faithfully represent all the T_0 spaces. The core intuition is that a T_0 space can be completely recovered from the embedding $\Omega(X) \subseteq U(X)$, as the space of completely join-prime elements.

- A Raney algebra is a pair (L, D) where
 - *D* is a completely distributive lattice generated by its completely join-prime elements;
 - $L \subseteq D$ is a frame embedding;
 - *L* meet-generates *D*.

Raney duality (see [Bezhanishvili and Harding, 2020]) enables us to faithfully represent all the T_0 spaces. The core intuition is that a T_0 space can be completely recovered from the embedding $\Omega(X) \subseteq U(X)$, as the space of completely join-prime elements.

- A Raney algebra is a pair (L, D) where
 - *D* is a completely distributive lattice generated by its completely join-prime elements;
 - $L \subseteq D$ is a frame embedding;
 - *L* meet-generates *D*.

Morphisms of Raney algebras are complete lattice morphisms that respect the designated frame. We call the category ${f R}{f A}$.

Raney duality (see [Bezhanishvili and Harding, 2020]) enables us to faithfully represent all the T_0 spaces. The core intuition is that a T_0 space can be completely recovered from the embedding $\Omega(X) \subseteq U(X)$, as the space of completely join-prime elements.

- A Raney algebra is a pair (L, D) where
 - *D* is a completely distributive lattice generated by its completely join-prime elements;
 - $L \subseteq D$ is a frame embedding;
 - *L* meet-generates *D*.

Morphisms of Raney algebras are complete lattice morphisms that respect the designated frame. We call the category **RA**. For any space X, the pair $(\Omega(X), \mathcal{U}(X))$ is a Raney algebra. For a Raney algebra (L, D), one can define the topological space $\operatorname{pt}_{RA}(L, D)$ of completely join-prime elements of D.

Raney duality (see [Bezhanishvili and Harding, 2020]) enables us to faithfully represent all the T_0 spaces. The core intuition is that a T_0 space can be completely recovered from the embedding $\Omega(X) \subseteq U(X)$, as the space of completely join-prime elements.

- A Raney algebra is a pair (L, D) where
 - *D* is a completely distributive lattice generated by its completely join-prime elements;
 - $L \subseteq D$ is a frame embedding;
 - *L* meet-generates *D*.

Morphisms of Raney algebras are complete lattice morphisms that respect the designated frame. We call the category **RA**. For any space X, the pair $(\Omega(X), \mathcal{U}(X))$ is a Raney algebra. For a Raney algebra (L, D), one can define the topological space $pt_{RA}(L, D)$ of completely join-prime elements of D.

Theorem

There is a dual adjunction Ω_{RA} : **Top** \leftrightarrows **RA**^{op} : pt_{RA} . The fixpoints are T_0 spaces on one side, and all Raney algebras on the other.

Raney duality has an issue: all Raney algebras are spatial. The obvious forgetful functor $\mathbf{RA} \rightarrow \mathbf{Frm}$ only reaches the spatial frames; in other words: only spatial frames can be extended to Raney algebras. But we would like to be able to extend any frame in such fashion.

Raney duality has an issue: all Raney algebras are spatial. The obvious forgetful functor $\mathbf{RA} \rightarrow \mathbf{Frm}$ only reaches the spatial frames; in other words: only spatial frames can be extended to Raney algebras. But we would like to be able to extend any frame in such fashion.

The pair (Ω_{RA}, pt_{RA}) being an equivalence (in particular, essential surjectiveness of pt_{RA}) relies on there being enough completely join-primes in a Raney algebra.

Raney duality has an issue: all Raney algebras are spatial. The obvious forgetful functor $\mathbf{RA} \rightarrow \mathbf{Frm}$ only reaches the spatial frames; in other words: only spatial frames can be extended to Raney algebras. But we would like to be able to extend any frame in such fashion.

The pair (Ω_{RA}, pt_{RA}) being an equivalence (in particular, essential surjectiveness of pt_{RA}) relies on there being enough completely join-primes in a Raney algebra. To do away with points, we plan to use the following observation.

Observation

Even if we drop the constraint that in (L, D) the lattice D is generated by the completely join-prime elements, the pair of functors (Ω_{RA}, pt_{RA}) , suitably extended, is still well-defined, and a dual adjunction...

• exact if $\bigwedge_i x_i \lor y = \bigwedge_i (x_i \lor y)$ for all $y \in L$;

- exact if $\bigwedge_i x_i \lor y = \bigwedge_i (x_i \lor y)$ for all $y \in L$;
- strongly exact if $x_i \to y = y$ implies $\bigwedge_i x_i \to y$ for all $y \in L$.

Strongly exact meets are precisely those meets that are preserved by any frame morphism.

- exact if $\bigwedge_i x_i \lor y = \bigwedge_i (x_i \lor y)$ for all $y \in L$;
- strongly exact if $x_i \to y = y$ implies $\bigwedge_i x_i \to y$ for all $y \in L$.

Strongly exact meets are precisely those meets that are preserved by any frame morphism. A filter is *(strongly) exact*, abbreviated as (S)E, if it is closed under (strongly) exact meets.

- exact if $\bigwedge_i x_i \lor y = \bigwedge_i (x_i \lor y)$ for all $y \in L$;
- strongly exact if $x_i \to y = y$ implies $\bigwedge_i x_i \to y$ for all $y \in L$.

Strongly exact meets are precisely those meets that are preserved by any frame morphism. A filter is *(strongly) exact*, abbreviated as (S)E, if it is closed under (strongly) exact meets. In [Moshier et al., 2020], the following is proven.

Theorem

The collection $Filt_{\mathcal{E}}(L)$ and $Filt_{\mathcal{SE}}(L)$ of E and SE filters are both frames.

- exact if $\bigwedge_i x_i \lor y = \bigwedge_i (x_i \lor y)$ for all $y \in L$;
- strongly exact if $x_i \to y = y$ implies $\bigwedge_i x_i \to y$ for all $y \in L$.

Strongly exact meets are precisely those meets that are preserved by any frame morphism. A filter is *(strongly) exact*, abbreviated as (S)E, if it is closed under (strongly) exact meets. In [Moshier et al., 2020], the following is proven.

Theorem

The collection $\operatorname{Filt}_{\mathcal{E}}(L)$ and $\operatorname{Filt}_{\mathcal{SE}}(L)$ of E and SE filters are both frames. There are also isomorphisms $\operatorname{Filt}_{\mathcal{E}}(L) \cong S_{\mathfrak{c}}(L)$ and $\operatorname{Filt}_{\mathcal{SE}}(L)^{op} \cong S_{\mathfrak{o}}(L)$.

- exact if $\bigwedge_i x_i \lor y = \bigwedge_i (x_i \lor y)$ for all $y \in L$;
- strongly exact if $x_i \to y = y$ implies $\bigwedge_i x_i \to y$ for all $y \in L$.

Strongly exact meets are precisely those meets that are preserved by any frame morphism. A filter is *(strongly) exact*, abbreviated as (S)E, if it is closed under (strongly) exact meets. In [Moshier et al., 2020], the following is proven.

Theorem

The collection $\operatorname{Filt}_{\mathcal{E}}(L)$ and $\operatorname{Filt}_{\mathcal{SE}}(L)$ of E and SE filters are both frames. There are also isomorphisms $\operatorname{Filt}_{\mathcal{E}}(L) \cong S_{\mathfrak{c}}(L)$ and $\operatorname{Filt}_{\mathcal{SE}}(L)^{op} \cong S_{\mathfrak{o}}(L)$.

We define a Raney extension as a pair (L, C) such that:

- C is a coframe;
- $L \subseteq C$ is a frame embedding which preserves SE meets;
- L meet-generates C.

We define a Raney extension as a pair (L, C) such that:

- C is a coframe;
- $L \subseteq C$ is a frame embedding which preserves SE meets;
- L meet-generates C.

Observation

Routine calculations show that a Raney extension is a Raney algebra if and only if C is join-generated by the completely join-prime elements.

We define a Raney extension as a pair (L, C) such that:

- C is a coframe;
- $L \subseteq C$ is a frame embedding which preserves SE meets;
- L meet-generates C.

Observation

Routine calculations show that a Raney extension is a Raney algebra if and only if C is join-generated by the completely join-prime elements.

Morphisms are defined as coframe maps that respect the designated frame. We call the category ${\bf Raney}.$

We define a Raney extension as a pair (L, C) such that:

- C is a coframe;
- $L \subseteq C$ is a frame embedding which preserves SE meets;
- L meet-generates C.

Observation

Routine calculations show that a Raney extension is a Raney algebra if and only if C is join-generated by the completely join-prime elements.

Morphisms are defined as coframe maps that respect the designated frame. We call the category **Raney**. The original dual equivalence by Raney can easily be extended to the following.

Theorem

There is a dual adjunction Ω_R : **Top** \leftrightarrows **Raney**^{op} : pt_R . The fixpoints are T_0 spaces on one side, and Raney algebras on the other.

• The pair $(\Omega(X), \mathcal{U}(X))$ for any space X.

- The pair $(\Omega(X), \mathcal{U}(X))$ for any space X.
- The pair (L, Filt_{SE}(L)^{op}) for any frame L. Equivalently, this is the embedding
 o : L → S_o(L).

- The pair $(\Omega(X), \mathcal{U}(X))$ for any space X.
- The pair (L, Filt_{SE}(L)^{op}) for any frame L. Equivalently, this is the embedding o : L → S₀(L).
- The pair (L, Filt_E(L)^{op}) for any frame L. Equivalently, this is the embedding c : L → S_c(L)^{op}.

- The pair $(\Omega(X), \mathcal{U}(X))$ for any space X.
- The pair (L, Filt_{SE}(L)^{op}) for any frame L. Equivalently, this is the embedding o : L → S₀(L).
- The pair (L, Filt_E(L)^{op}) for any frame L. Equivalently, this is the embedding c : L → S_c(L)^{op}.
- The pair (L, L^{δ}) for any pre-spatial frame L, where L^{δ} is the canonical extension of L as defined in [Jakl, 2020],

- The pair $(\Omega(X), \mathcal{U}(X))$ for any space X.
- The pair (L, Filt_{SE}(L)^{op}) for any frame L. Equivalently, this is the embedding o : L → S₀(L).
- The pair (L, Filt_E(L)^{op}) for any frame L. Equivalently, this is the embedding c : L → S_c(L)^{op}.
- The pair (L, L^{δ}) for any pre-spatial frame L, where L^{δ} is the canonical extension of L as defined in [Jakl, 2020],
- The pair $(L, \overline{B(L)})$ for a subfit frame L, where $\overline{B(-)}$ is the Funayama construction (see, for example, [Bezhanishvili et al., 2013]).

Every frame has the largest and the smallest Raney extension. In [Suarez, 2024a], the following is shown.

Theorem

For any Raney extensions (L, C), we have surjections

 $(L, \operatorname{Filt}_{\mathcal{SE}}(L)^{op})) \twoheadrightarrow (L, C) \twoheadrightarrow (L, \operatorname{Filt}_{\mathcal{E}}(L)^{op}).$

Every frame has the largest and the smallest Raney extension. In [Suarez, 2024a], the following is shown.

Theorem

For any Raney extensions (L, C), we have surjections

 $(L, \operatorname{Filt}_{\mathcal{SE}}(L)^{op})) \twoheadrightarrow (L, C) \twoheadrightarrow (L, \operatorname{Filt}_{\mathcal{E}}(L)^{op}).$

This result shows that the structures $S_{\mathfrak{o}}(L)$ and $S_{\mathfrak{c}}(L)^{op}$, well-studied in pointfree topology, enjoy universal properties which are dual of one another.

What happens if we take the spectrum pt_R of the two embedding in the theorem above?

Theorem

For any Raney extensions (L, C), we have subspace inclusions

 $\operatorname{pt}_D(L) \subseteq \operatorname{pt}_R(L, C) \subseteq \operatorname{pt}(L),$

where pt(L) is the classical spectrum of L, and $pt_D(L)$ its T_D spectrum, as introduced in [Banaschewski and Pultr, 2010].

What happens if we take the spectrum pt_R of the two embedding in the theorem above?

Theorem

For any Raney extensions (L, C), we have subspace inclusions

 $\operatorname{pt}_D(L) \subseteq \operatorname{pt}_R(L, C) \subseteq \operatorname{pt}(L),$

where pt(L) is the classical spectrum of L, and $pt_D(L)$ its T_D spectrum, as introduced in [Banaschewski and Pultr, 2010].

This gives another sense in which the T_D axiom is a mirror image of sobriety, apart from that described in [Banaschewski and Pultr, 2010].

Every Raney extension may be seen as a collection of filters of the base frame. In fact, we have an adjunction

$$C \xrightarrow[]{ \ } \stackrel{\uparrow^L}{\underset{ \ }{\overset{ \ }}} \operatorname{Filt}(L)^{op}$$

where $\uparrow^L c = \{a \in L : x \leq a\}$. This restricts to an isomorphism between C and some subcolocale of Filt(L)^{op}.

Every Raney extension may be seen as a collection of filters of the base frame. In fact, we have an adjunction

$$C \xrightarrow[]{ \ } \stackrel{\uparrow^L}{\underset{ \ }{\overset{ \ }}} \operatorname{Filt}(L)^{op}$$

where $\uparrow^L c = \{a \in L : x \leq a\}$. This restricts to an isomorphism between C and some subcolocale of Filt(L)^{op}.

Theorem

A morphism $f : L \to M$ extends to a Raney morphism $(L, \mathcal{F}) \to (M, \mathcal{G})$ if and only if $f^{-1}(G) \in \mathcal{F}$ for all $G \in \mathcal{G}$.

Exact morphisms

We now show some results from [Suarez, 2024b] showing applications to exactness and the T_D duality. From the result we know that the assignment $L \mapsto (L, S_c(L)^{op})$ is functorial precisely for those morphisms such that preimages of exact filters are exact.

Exact morphisms

We now show some results from [Suarez, 2024b] showing applications to exactness and the T_D duality. From the result we know that the assignment $L \mapsto (L, S_c(L)^{op})$ is functorial precisely for those morphisms such that preimages of exact filters are exact. Explicitly, these are the *exact* morphisms: we call a frame morphism $f : L \to M$ exact if for all exact meets $\bigwedge_i x_i \in L$ we have that $\bigwedge_i f(x_i)$ is exact and equals $f(\bigwedge_i x_i)$.

Proposition

A morphism $f : L \to M$ of frames extend to a frame morphism $S_c(L) \to S_c(M)$ if and only if it is exact.

Exact morphisms

We now show some results from [Suarez, 2024b] showing applications to exactness and the T_D duality. From the result we know that the assignment $L \mapsto (L, S_c(L)^{op})$ is functorial precisely for those morphisms such that preimages of exact filters are exact. Explicitly, these are the *exact* morphisms: we call a frame morphism $f : L \to M$ exact if for all exact meets $\bigwedge_i x_i \in L$ we have that $\bigwedge_i f(x_i)$ is exact and equals $f(\bigwedge_i x_i)$.

Proposition
A morphism $f: L \to M$ of frames extend to a frame morphism $S_{c}(L) \to S_{c}(M)$ if and only if it
is exact.

For a frame L, the following are all exact maps.

- The surjection corresponding to an open sublocale.
- The surjection corresponding to a closed sublocale.
- The surjection corresponding to a d-point.

Exact morphisms: counterexamples

• \$ (Aixi) = A; \$(xi) • A; \$(xi) not exact

For a frame L we call a sublocale *exact* if the corresponding surjection is exact.

Theorem

We have a chain of subcolocale inclusions

 $S_{\mathcal{E}}(L) \subseteq S_D(L) \subseteq S(L),$

where $S_D(L)$ is the collection of D-sublocales in [Arrieta and Suarez, 2021].

For a frame L we call a sublocale *exact* if the corresponding surjection is exact.

Theorem

We have a chain of subcolocale inclusions

 $S_{\mathcal{E}}(L) \subseteq S_D(L) \subseteq S(L),$

where $S_D(L)$ is the collection of D-sublocales in [Arrieta and Suarez, 2021].

Not all d-morphisms are exact. See the first counterexample before.

Exactness and the T_D duality

Let us now look at the connection with T_D duality. Restricting \mathbf{Frm}_D further, to $\mathbf{Frm}_{\mathcal{E}}$, does not disrupt T_D duality, while giving us functoriality of $L \mapsto S_{\mathfrak{c}}(L)$.

Exactness and the T_D duality

Let us now look at the connection with T_D duality. Restricting \mathbf{Frm}_D further, to $\mathbf{Frm}_{\mathcal{E}}$, does not disrupt T_D duality, while giving us functoriality of $L \mapsto S_c(L)$.

Lemma

If $f : L \rightarrow M$ is a d-morphism and M is T_D -spatial, then f is exact.

Exactness and the T_D duality

Let us now look at the connection with T_D duality. Restricting \mathbf{Frm}_D further, to $\mathbf{Frm}_{\mathcal{E}}$, does not disrupt T_D duality, while giving us functoriality of $L \mapsto S_c(L)$.

Lemma

If $f: L \rightarrow M$ is a d-morphism and M is T_D -spatial, then f is exact.

Theorem

We have a commuting diagram as follows, where $S_{\mathfrak{c}}: L \mapsto (L, S_{\mathfrak{c}}(L)^{op})$.

In fact, the Raney approach encompasses both the classical and the T_D approaches to pointfree topology. The following commutes.

In fact, the Raney approach encompasses both the classical and the T_D approaches to pointfree topology. The following commutes.

In other words, the T_D duality and the sober duality are both restrictions of Raney duality: each frame is identified, respectively, with the smallest and the largest Raney extension on it. In this sense, the sober duality and the T_D duality are mirror images of one another.

References I

 Arrieta, I. and Suarez, A. L. (2021).
The coframe of D-sublocales of a locale and the T_D-duality. Topology and its Applications, 291:107614.

Banaschewski, B. and Pultr, A. (2010). Pointfree Aspects of the T_D Axiom of Classical Topology. Quaestiones Mathematicae, 33(3):369–385.

Bezhanishvili, G., Gabelaia, D., and Jibladze, M. (2013).
Funayama's theorem revisited.
Algebra Universalis, 70(3):271–286.

Bezhanishvili, G. and Harding, J. (2020).
Raney algebras and duality for T₀ spaces.
Appl. Categorical Struct., 28:963–973.

References II

📄 Jakl, T. (2020).

Canonical extensions of locally compact frames. *Topology and its Applications*, 273:106976.

Moshier, M. A., Pultr, A., and Suarez, A. L. (2020).
Exact and strongly exact filters.
Applied Categorical Structures, 28(6):907–920.

Suarez, A. L. (2024a).
Raney extensions of frames: algebraic aspects.

Suarez, A. L. (2024b).

Raney extensions of frames: topological aspects.