July 09, 2024

SUMTOPO 2024

GENERICALLY HEREDITARILY EQUIVALENT PEANO CONTINUA

Bryant Rosado Silva joint work with Benjamin Vejnar (Charles University)

Introduction

A compact, connected, and metrizable space is a **continuum**. If it is locally connected, it is a **Peano continuum**.

Definition 1.2

A continuum X is **hereditarily equivalent** if every non-degenerate subcontinuum of it is homeomorphic to X. In this case we say X is HEC.

If X is a continuum, Cont(X) is the hyperspace of subcontinua of X. Fin₁(X) is the hyperspace of singletons of X.

Note that if X is HEC

$$\mathscr{G} = \{ K \in \operatorname{Cont}(X) \mid K \simeq X \} = \operatorname{Cont}(X) \setminus \operatorname{Fin}_1(X)$$

so \mathscr{G} is a comeager subset of $\operatorname{Cont}(X)$.

A continuum X is generically hereditarily equivalent if

$$\{K \in \operatorname{Cont}(X) \mid K \simeq X\}$$

is comeager in Cont(X). In this case we say X is GHEC.

Generalized Ważewski dendrite is GHEC

A **dendrite** is a Peano continuum without homeomorphic copies of the circle.

The universal Ważewski dendrite is such that every dendrite can be embedded into it. How can one construct it?

A **dendrite** is a Peano continuum without homeomorphic copies of the circle.

The universal Ważewski dendrite is such that every dendrite can be embedded into it. How can one construct it?

A **dendrite** is a Peano continuum without homeomorphic copies of the circle.

The universal Ważewski dendrite is such that every dendrite can be embedded into it. How can one construct it?

Order

Definition 2.2

Given a topological space X and $A \subseteq X$, the **order** of A in X is the least cardinal number α for which every open set $U \supseteq A$ there exists open set V such that

$$A \subseteq V \subseteq U$$
 and $|\partial V| \leq \alpha$.

We write that

$$\operatorname{ord}(A, X) = \alpha.$$

Definition 2.3

Let $M \subseteq \{3, 4, 5, \ldots\} \cup \{\omega\}$. The dendrite W_M is defined as the dendrite whose set of branching points are of order $m \in M$ and for all $m \in M$

$$\{x \in W_M \mid \operatorname{ord}(x, W_M) = m\}$$

is arcwise dense in W_M .

Let X, Y be dendrites with $X \subseteq Y$. The first point map $r_{Y,X} : Y \to X$ takes $y \in Y$ to the first point in the arc starting from y to any $x \in X$ that is also in X.

Lemma 2.5

Let X, Y be dendrites with $X \subseteq Y$. A branching point x of X is **maximal** in Y if one of the following are satisfied:

- (i) $r_{Y,X}^{-1}(x)$ is degenerate $(|r_{Y,X}^{-1}(x)| = 1)$.
- (ii) there is no arc $A \subseteq Y$ from $y \in Y \setminus X$ to x with $A \cap X = \{x\}$.
- (iii) every open neighborhood of *b* in *X* meets each component of $Y \setminus \{b\}$.

Given $M \subseteq \{3, 4, \ldots\} \cup \{\omega\}$, $M \neq \emptyset$, the generic subcontinua of W_M is homeomorphic to W_M .

Proof's sketch:

- $\mathcal{B}(W_M)$ be the collection of branching points of W_M
- $\mathcal{M}(b, \ell) = \left\{ K \in \operatorname{Cont}(W_M) \mid \begin{array}{c} b \in K \text{ and } K \text{ does not meet} \\ \text{the } \ell \text{-th component of } W_M \setminus \{b\} \end{array} \right\}$
- $\mathcal{M}(b,\ell)$ is closed: If $K \in \operatorname{Cont}(W_M) \setminus \mathcal{M}(b,\ell)$ either $b \notin K$ or $b \in K$ but K meets the ℓ -th component U of $W_M \setminus \{b\}$. Thus,

$$K \in \langle \{b\}^c \rangle$$
 or $K \in \langle X, U \rangle$.

Given $M \subseteq \{3, 4, \ldots\} \cup \{\omega\}$, $M \neq \emptyset$, the generic subcontinua of W_M is homeomorphic to W_M .

Proof's sketch:

- $\mathcal{B}(W_M)$ be the collection of branching points of W_M
- $\mathcal{M}(b, \ell) = \left\{ K \in \operatorname{Cont}(W_M) \mid \begin{array}{c} b \in K \text{ and } K \text{ does not meet} \\ \text{the } \ell \text{-th component of } W_M \setminus \{b\} \end{array} \right\}$
- $\mathcal{M}(b,\ell)$ is closed: If $K \in \operatorname{Cont}(W_M) \setminus \mathcal{M}(b,\ell)$ either $b \notin K$ or $b \in K$ but K meets the ℓ -th component U of $W_M \setminus \{b\}$. Thus,

$$K \in \langle \{b\}^c \rangle$$
 or $K \in \langle X, U \rangle$.

Given $M \subseteq \{3, 4, \ldots\} \cup \{\omega\}$, $M \neq \emptyset$, the generic subcontinua of W_M is homeomorphic to W_M .

Proof's sketch:

- $\mathcal{B}(W_M)$ be the collection of branching points of W_M
- $\mathscr{M}(b,\ell) = \left\{ K \in \operatorname{Cont}(W_M) \mid \begin{array}{c} b \in K \text{ and } K \text{ does not meet} \\ \text{the } \ell \text{-th component of } W_M \setminus \{b\} \end{array} \right\}$
- $\mathcal{M}(b,\ell)$ is closed: If $K \in \operatorname{Cont}(W_M) \setminus \mathcal{M}(b,\ell)$ either $b \notin K$ or $b \in K$ but K meets the ℓ -th component U of $W_M \setminus \{b\}$. Thus,

$$K \in \langle \{b\}^c \rangle$$
 or $K \in \langle X, U \rangle$.

Given $M \subseteq \{3, 4, \ldots\} \cup \{\infty\}$, $M \neq \emptyset$, the generic subcontinua of W_M is homeomorphic to W_M .

Proof's sketch:

M(b, ℓ) has an empty interior: Given K ∈ *M*(b, ℓ) and ε > 0, there exists a connected open neighborhood V of b contained in B(b, ε/2). Hence, K' = K ∪ V ∈ Cont(W_M) \ *M*(b, ℓ) is at distance smaller than ε from K

$$\begin{aligned} \mathscr{G} &= \operatorname{Cont}(W_M) \setminus \left(\left(\bigcup_{b \in \mathscr{B}(W_M)} \bigcup_{\ell} \mathscr{M}(b,\ell) \right) \cup \operatorname{Fin}_1(W_M) \right) \\ &= \left\{ K \in \operatorname{Cont}(W_M) \mid \begin{array}{c} K \text{ is non-degenerate and if } b \in \mathcal{B}(W_M) \cap K, \\ \text{ then } b \in \mathcal{B}(K) \text{ and it is maximal in } W_M \end{array} \right. \end{aligned}$$

Given $M \subseteq \{3, 4, \ldots\} \cup \{\infty\}$, $M \neq \emptyset$, the generic subcontinua of W_M is homeomorphic to W_M .

Proof's sketch:

M(b, ℓ) has an empty interior: Given K ∈ *M*(b, ℓ) and ε > 0, there exists a connected open neighborhood V of b contained in B(b, ε/2). Hence, K' = K ∪ V ∈ Cont(W_M) \ *M*(b, ℓ) is at distance smaller than ε from K

$$\begin{split} \mathscr{G} &= \operatorname{Cont}(W_M) \setminus \left(\left(igcup_{b \in \mathscr{B}(W_M)} igcup_{\ell} \mathscr{M}(b,\ell)
ight) \cup \operatorname{Fin}_1(W_M)
ight) \ &= \left\{ K \in \operatorname{Cont}(W_M) \ \middle| igcup_{K} ext{ is non-degenerate and if } b \in \mathcal{B}(W_M) \cap K, \ & ext{ then } b \in \mathcal{B}(K) ext{ and it is maximal in } W_M \end{split}
ight)$$

If X is a Peano GHEC, then X is an arc or a dendrite such that for every $m \in \{3, 4, \ldots\} \cup \{\omega\}$ the collection of branching points of order m is either dense or empty. Moreover, the collection of branching points is arcwise dense.

An order arc in Cont(X) is a subcontinuum $\mathcal{A} \subseteq Cont(X)$ homeomorphic to [0,1] such that for every pair of points $A, B \in \mathcal{A}$, either $A \subseteq B$ or $B \subseteq A$. We denote the space of order arcs by

 $OA(X) \subseteq Cont(Cont(X)).$

Definition 3.2

A maximal order arc in Cont(X) is an order arc starting from a set $\{x\}$ for some $x \in X$ and ending in X. We can restrict OA(X) space to the collection of maximal order arcs, denoted by MOA(X), which is a Polish space.

Let X be a continuum, we say that

• GCHEC holds for X if and only if

 $\{C \in \mathsf{MOA}(X) \mid \forall C \in C, C \text{ nondegenerate implies } C \simeq X\}$

is a comeager subset of MOA(X).

• GCGHEC holds for X if and only if

$$\{\mathcal{C} \in \mathsf{MOA}(X) \mid \forall^* C \in \mathcal{C} \ (C \simeq X)\}$$

is a comeager subset of MOA(X).

Theorem 3.4

If Z and Y are Polish spaces and $f : Z \to Y$ in a continuous and comeager way, then a set S with Baire property is comeager in Z if and only if $S \cap f^{-1}(y)$ is comeager in $f^{-1}(y)$ for comeager many y in Y.

Let

$$\mathscr{G} = \begin{cases} \mathcal{K} \in \operatorname{Cont}(W_M) & K \simeq W_M \text{ and if } b \in \mathcal{B}(W_M) \cap K, \\ \text{then } b \in \mathcal{B}(K) \text{ and it is maximal in } W_M \end{cases}$$

Proposition 3.5

GCGHEC holds for W_M .

Proof idea: Prove that

$$\mathcal{Z}' = \{(\mathcal{C}, K) \in \mathcal{Z} \mid K \in \mathscr{G}\}$$

is comeager in

$$\mathcal{Z} = \{(\mathcal{C}, K) \in \mathsf{MOA}(W_M) \times \mathrm{Cont}(W_M) \mid K \in \mathcal{C}\}$$

and apply the Disintegration Theorem using the projection

$$\pi_2: \mathcal{Z} \to \mathsf{MOA}(W_M).$$

Lemma 3.6

If $C \in MOA(W_M)$ and the collection of $K \in C$ with $K \simeq W_M$ is dense in C, then every nondegenerate element of C is homeomorphic to W_M .

Theorem 3.7

GCHEC holds for W_M .

Properties of the comeager maximal order arc in $MOA(W_M)$

Banič, Črepnjak, Sovič together with more two authors described a way to define the Ważewski universal dendrite as the generalized inverse limit of a single set-valued bonding function $f : [0, 1] \rightarrow Fin[0, 1]$.

$$f_t^{-1}(s) = \begin{cases} [a_n, a_n + (t - a_n)(b_n - a_n)/(1 - a_n)], \text{ if } s = a_n \text{ for some } n \in \mathbb{N}, \\ \{s\}, \text{ otherwise.} \end{cases}$$

$$f_t^{-1}(s) = \begin{cases} [a_n, a_n + (t - a_n)(b_n - a_n)/(1 - a_n)], \text{ if } s = a_n \text{ for some } n \in \mathbb{N}, \\ \{s\}, \text{ otherwise.} \end{cases}$$

$$f_t^{-1}(s) = \begin{cases} [a_n, a_n + (t - a_n)(b_n - a_n)/(1 - a_n)], \text{ if } s = a_n \text{ for some } n \in \mathbb{N}, \\ \{s\}, \text{ otherwise.} \end{cases}$$

$$f_t^{-1}(s) = \begin{cases} [a_n, a_n + (t - a_n)(b_n - a_n)/(1 - a_n)], \text{ if } s = a_n \text{ for some } n \in \mathbb{N}, \\ \{s\}, \text{ otherwise.} \end{cases}$$

Theorem 4.1

The generic element C of MOA(W_M) satisfies:

(i) If $K \in C$ is nondegenerate, then $K \simeq W_M$;

(ii)
$$\cap C = \{x\}$$
 where $x \in End(W_M)$;

(iii) If $K_1, K_2 \in C$ with $K_1 \subsetneq K_2$, then K_1 is nowhere dense in K_2 .

- (iv) If $K \in C$, then $End(K) \setminus (\cup \{K' \in C \mid K' \subsetneq K\})$ is dense in K.
- (v) If $K_1, K_2 \in C$ with $K_1 \subsetneq K_2$, then every branching point of K_1 is maximal in K_2 .
- (vi) If $K_1, K_2 \in C$ with $K_1 \subsetneq K_2$, then $|r_{K_2,K_1}^{-1}(x)| > 1$ implies $x \in End(K_1)$.

Muito obrigado!