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Preliminaries

Quasi-pseudometric

Let X be a non-empty set and let d : X × X → [0,∞) be a function
mapping into the set [0,∞) of the non-negative reals.Then d is
called a quasi-pseudometric on X if
(a) d(x , x) = 0 whenever x ∈ X , and
(b) d(x , z) ≤ d(x , y) + d(y , z) whenever x , y , x ∈ X .
The pair (X ,d) is said to be a quasi-pseudometric space.
If d satisfies the additional condition that d(x , y) = 0 = d(y , x)
implies that x = y , we call d a T0-quasi-metric. The set X together
with a T0-quasi-metric is called a T0-quasi-metric space.
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Preliminaries

Conjugate quasi-pseudometric

If d is a quasi-pseudometric on a set X , then we define the
conjugate quasi-pseudometric d−1 : X × X → [0,∞) by
d−1(x , y) = d(y , x) whenever x , y ∈ X .
If d is a T0-quasi-quasi-metric, then ds = max{d ,d−1} = d ∨ d−1

is a metric.
Let (X ,d) be a quasi-pseudometric space. By an open ϵ-ball
centered at a point x ∈ X denoted Bd(x , ϵ), we mean
{y ∈ X : d(x , y) < ϵ} for every ϵ > 0.
On the other hand Cd(x , ϵ) = {y ∈ X : d(x , y) ≤ ϵ} is known as
the closed ϵ-ball centered at x ∈ X for some ϵ ≥ 0.
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Preliminaries

Example and remark

Example

Given two real numbers a and b we shall write a−̇b for max{a − b,0}
which we can also denote by (a − b) ∨ 0. Note that d(x , y) = x−̇y with
x , y ∈ R defines a T0-quasi-metric on the set R of the reals. Observe
that x 7→ −x defines a bijective isometric map from (R,d) to (R,d t).

Remark
The collection {Bd(x , ϵ) : x ∈ X , ϵ > 0} of all “open” balls yields a base
for a topology τ(d). It is called the topology induced by d on X.
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Preliminaries

Family of double balls

For a quasi-pseudometric space (X ,d), the pair (Cd(x , r);Cd−1(x , s))
with x ∈ X and non-negative reals r and s will be called a double ball
at x . We talk of a family [(Cd(xi , ri))i∈I ; (Cd−1(xi , si))i∈I ] of double balls,
with xi ∈ X and ri , si ≥ 0 whenever i ∈ I.

Let us denote by P0(X ) the set of all nonempty subsets of X . Given
A ∈ P0(X ), we define

dist(x ,A) = inf{d(x ,a) : a ∈ A},

whenever x ∈ X .
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q-hyperconvexity in quasi-pseudometric spaces

Definition of q-hyperconvexity

Definition
A(n extended) quasi-pseudometric space (X ,d) will be called
q-hyperconvex provided that for each family (xi)i∈I of points in X and
families (ri)i∈I and (si)i∈I of non-negative real numbers the following
condition holds:

If d(xi , xj) ≤ ri + sj whenever i , j ∈ I,

then ⋂
i∈I

(Cd(xi , ri) ∩ Cd−1(xi , si)) ̸= ∅.
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q-hyperconvexity in quasi-pseudometric spaces

Given a quasi-pseudometric space (X ,d) with x ∈ X and non-negative
real numbers r and s, we shall make use of the following notation

Cx(r , s) := Cd(x , r) ∩ Cd−1(x , s).

Definition
A subset D of a quasi-pseudometric space (X ,d) is called bounded if
there is a real number M > 0 such that d(x , y) < M for every x , y ∈ D.

See immediately then that a subset D of (X ,d) will be said to be
bounded if and only if there are x ∈ X and non-negative real numbers
r and s such that D ⊆ Cx(r , s).
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q-hyperconvexity in quasi-pseudometric spaces

Q-admissible subset of a quasi-pseudometric space
(X ,d)

Definition
Let (X ,d) be a quasi-pseudometric space. A nonempty bounded
subset of X that can be written as the intersection of a nonempty
family of sets of the form Cx(r , s) where r and s are non-negative real
numbers and x ∈ X, will be called q-admissible.

We shall denote by Aq(X ) the set of q-admissible subsets of X .
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Externally q-hyperconvex subsets

Definition of external q-hyperconvex subset

Definition
Let (X ,d) be a quasi-pseudometric space. A subspace E of (X ,d) is
said to be externally q-hyperconvex (relative to X) if given any family
(xi)i∈I of points in X and families (ri)i∈I and (si)i∈I of non-negative real
numbers the following condition holds:

If d(xi , xj) ≤ ri + sj whenever i , j ∈ I, dist(xi ,E) ≤ ri ,dist(E , xi) ≤ si

whenever i ∈ I, then ⋂
i∈I

Cxi (ri , si) ∩ E ̸= ∅.

We shall denote by Eq(X ,d) the set of nonempty externally
q-hyperconvex subsets of a quasi-pseudometric space (X ,d).
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Externally q-hyperconvex subsets

Proposition

Let (X ,d) be a quasi-pseudometric space and E ⊆ X.

(a) If E ∈ Eq(X ,d), then E ∈ Eq(X ,d−1).

(b) If E ∈ Eq(X ,d), then E is an externally hyperconvex subspace of
(X ,ds).

It is easy to prove that if X is q-hyperconvex, then Aq(X ) ⊂ Eq(X ,d).
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Externally q-hyperconvex subsets

Example

Let X = R be the set of reals equipped with the T0-quasi-metric u
defined by u(x , y) := x−̇y = max{x − y ,0}. Then (X ,u) is
q-hyperconvex by [2, Example 1]. The subset A = [−1,2] is externally
q-hyperconvex (relative to R) since A ∈ Aq(X ), that is,
A = Cu(0,1) ∩ Cu−1(0,2).
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Results

Our first result is the following.

Proposition

Any pairwise intersecting finite collection of externally q-hyperconvex
subsets of a q-hyperconvex T0-quasi-metric space has a nonempty
intersection and this intersection is also externally q-hyperconvex.

Remark
What about a countable collection? By imposing additional conditions,
we obtain a similar result.
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Results

Lemma

([3, Theorem 6.5]) Let (X ,d) be a bounded q-hyperconvex
T0-quasi-metric space. Moreover, let (Xi)i∈I be a descending family of
non-empty externally q-hyperconvex subsets of X , where we assume
that I is a chain such that i1, i2 ∈ I and i1 ≤ i2 hold if and only if
Xi2 ⊆ Xi1 . Then,

∅ ≠
⋂
i∈I

Xi ∈ Eq(X ,d).

Proposition

Let (X ,d) be a bounded q-hyperconvex T0-quasi-metric space and
{Ai}i∈N be a countable family of pairwise intersecting externally
q-hyperconvex subsets of X . Then

∅ ≠
⋂
i∈N

Ai ∈ Eq(X ,d).
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Results

An arbitrary collection of externally q-hyperconvex subsets?

Proposition

Let (X ,d) be a bounded q-hyperconvex T0-quasi-metric space and
{Ai}i∈I be any family of pairwise intersecting externally q-hyperconvex
subsets such that at least one of them is bounded. Then

∅ ≠
⋂
i∈I

Ai ∈ Eq(X ,d).
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Results

We end with the following proposition.

Proposition

Let (X ,d) be a T0-quasi-metric space and Y ⊆ X be such that
Y ∈ Eq(X ,d). Moreover, let A be externally q-hyperconvex (relative to
Y ). Then A ∈ Eq(X ,d).
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