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Motivation and Definitions

A continuum is a compact connected metric space.

The primary motivation to study the necessary topology of

continua that admit homeomorphisms with particular “chaotic”

properties.

In particular, I am interested in what conditions for the continuum

to be

1 indecomposable

2 contain an indecomposable subcontinuum

3 if hereditarily decomposable, then what can be said about the

topology
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A continuum is indecomposable if every proper subcontinuum has

empty interior.

A continuum X is 1/n indecomposable if whenever {Ai}ni=1
are a

collection of pairwise disjoint subcontinua, at least one of {Ai}ni=1

has empty interior.

Note: 1/2 indecomposable is also called semi-indecomposable.
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The buckethandle continuum is indecomposable.
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A 1/2 or semi-indecomposable continuum. It is the union of two

indecomposable subcontinua
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The Cantor Fan is 1/2 or semi- indecomposable. However, it does

not contain an indecomposable subcontinuum. Hence, it is

hereditarily decomposable.
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Theorem

If f : X �! X is a map of a continuum then:

f is fully continuum-wise expansive.
+

f has the specification property =) f is mixing.
+

f is weakly mixing.
+

f is totally transitive.
+

f is transitive.
+

f has sensitive dependence on initial conditions.
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A map f is positively continuum-wise fully expansive if for every

✏ > 0 and nondegenerate subcontinuum Y , there exists

N = N(✏,Y ) such that dH(f n(Y ),X ) < ✏ for all n � N.

A map f is mixing if for every open sets U,V of X , there exists an

M such that f m(U) \ V 6= ; for all m � M.

That is, if U is open, then dH(f n(U),X )! 0 as n!1.

Christopher Mouron with Iztok Banič (University of Maribor), Goran Erceg (University of Split), Judy Kennedy (Lamar University) and Van Nall. (University of Richmond, retired)

The Specification Property of Homeomorphisms on Tree-like Continua



Let f : X �! X be a function on metric space X . (f ,X ) has the

Specification Property if for every ✏ > 0 there exists a positive

integer N = N(✏) such that for any finite set of points

x1, ..., xm 2 X and a a set of position integers n1, n2, ..., nm there

exists an y 2 X such that

d(f j(y), f j(x1)) < ✏ for every j 2 {0, ..., n1]

d(f j(y), f j(x2)) < ✏ for every j 2 {n1 + N, ..., n1 + n2 + N}

.

.

.

d(f j(y), f j(xn)) < ✏ for every

j 2 {n1+ ...+ nm�1+(m� 1)N, n1+ ...+ nm�1+ nm +(m� 1)N}.
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A continuum is tree-like if it is the inverse limit of trees.

That is let fi : Ti+1 �! Ti be a collection of maps of tree graphs

{Ti}1i=1
. Then the inverse limit of {Ti , fi} is a continuum bX

bX = lim �{Ti , fi}1i=1
= {(xi )1i=1

2
Q1

i=1
Ti |fi (xi+1) = xi}.

If x = hxi i1i=1
and y = hyi i1i=1

are two points of the inverse limit,

we define distance to be

d(x, y) =
P1

i=1

dTi
(xi ,yi )

2i
.
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Theorem

(Kato) If X is a continuum that admits a positively fully
continuum-wise expansive homeomorphism then X is
indecomposable.

The following theorems are by Jorge Mart́ınez-Montejano and

Verónica Mart́ınez-de-la-Vega and myself.

Theorem

(M,M,MV) If X is a G -like continuum that admits a mixing
homeomorphism, then X is indecomposable.

A continuum is G -like if it is the inverse limit of the same graph G .

Theorem

(M,M,MV) If X is a tree-like continuum that admits a mixing
homeomorphism, then X is semi-indecomposable.
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Theorem

(Kato) If X is a continuum that admits a positively fully
continuum-wise expansive homeomorphism then X is
indecomposable.

The following theorems are by Jorge Mart́ınez-Montejano and

Verónica Mart́ınez-de-la-Vega and myself.

Theorem

(M,M,MV) If X is a G -like continuum that admits a mixing
homeomorphism, then X is indecomposable.

A continuum is G -like if it is the inverse limit of the same graph G .

Theorem

(M,M,MV) If X is a tree-like continuum that admits a mixing
homeomorphism, then X is semi-indecomposable.
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Also, we have:

Theorem

(M,M,MV) There exists a hereditarily decomposable tree-like
continuum that admits a mixing homemorphism.

Recently by Iztok Banič, Goran Erceg, Judy Kennedy, Van Nall and

myself:

Theorem

(B,E,K,M,N) There exists an uncountable collection of
non-homeomorphic smooth fans that admit mixing
homeomorphisms.

Included in these are the Cantor Fan and the Lelek Fan. Also, we

have

Theorem

(B,E,K,M,N) There exists an uncountable collection of
non-homeomorphic non-smooth fans that admit mixing
homeomorphisms.
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Recap:

Theorem

If f : X �! X is a map of a tree-like continuum then:

f is fully continuum-wise expansive =) X is indecomposable

f has the specification property
+

f is mixing =) X is semi-indecomposable. X can be a fan. If X
is G -like then X is indecomposable.
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Main result

Theorem

There exists a hereditarily decomposable tree-like continuum that
admits a homeomorphism with the specification property.

Note: This shows that the specification property does not imply

fully continuum-wise expansive.

My construction is by using the shift homeomorphism on the

inverse limit of universal dendrites with the same bonding map

that itself has the specification property.

The universal dendrite D!.
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Main result

Theorem

There exists a hereditarily decomposable tree-like continuum that
admits a homeomorphism with the specification property.

The universal dendrite D!.
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Let [0, 1

2n
]n be an arc of length

1

2n
for n 2 N [ {0} = N0.

Let Fk =
S1

n=k
[0, 1

2n
]n/{0} be a “harmonic” fan of size k

(Diameter is
1

2k
).

The identification point 0 in Fk is called the root of Fk . Let
0 = (0, 0, 0, ...). We denote a point x 2 Fk by

x =

⇢
(k , 0) if x is the root of Fk
(n0, r0, 0) if r0 2 (0, 1

2n0
]n0
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Now let D(a, b) be the dyadic rationals on (a, b), that is

D(a, b) = { p

2n
2 (a, b) | P is an odd integer and n 2 N0}.

Let D0 = F0, with 0 as the root and for each (n0,
p0

2k0
, 0), where p0

is odd, in [0, 1

2n0
]n, identify the root from a copy of Fk0 to

(n0,
p0

2k0
, 0).

Define the dyadic points for D0 by

D(D0) = {(n0, r0, 0) 2 D0 | r0 2 D(0, 1)}

and let

D1 = F0 [
[

n2N0

[

p0

2
k0

2D(D0)

Fk

with the above identification.
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We denote a point x = (n0,
p0

2n1
, n1, r1, 0) 2 D1 � D0 where

(n1, r1, 0) is in a copy of Fn1 whose root is identified to (n0,
p0

2n1
, 0)

in D0.

Continuing inductively, suppose that D0,D1, ...,Dm have been

found. Then for each

(n0,
p0

2n1
, n1,

p1

2n2
, , ..., nm,

pm

2
nm+1

, 0) 2 Dm � Dm�1, identify the root

from a copy of Fnm+1
.

Define the dyadic points for Dm � Dm�1 by

D(Dm) = {(n0, p0

2n1
, ..., nm,

pm

2
nm+1

, 0) 2 Dm � Dm�1 | rm 2 D(0, 1)}.
Let

Dm+1 = Dm [
[

n�m

[

x2D(Dm)

Fnm+1
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We denote a point

x = (n0,
p0
2n1

, ..., nm,
pm

2nm+1

, nm+1, rm+1, 0) 2 Dm+1 � Dm

where (nm+1, rm+1, 0) is in a copy of Fnm+1
whose root is identified

to (n0,
p0

2n1
, ..., nm,

pm

2
nm+1

, 0) in Dm � Dm�1.

Note: if rm is not a dyadic rational, then rm must be followed by 0.
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Let D! =
S1

i=0
Di . If x 2 D! �

S1
i=0

Di , then x is any sequence of

the form

(n0,
p0
2n1

, n1,
p1
2n2

, ..., nm,
pm

2nm+1

...)

where pi is odd and n0 < n1 < ...nm < ....

If x = (n0, r0, ..., nk , rk , 0) and y = (m0, s0, ...,mk , sk , 0). Let p be

the first index that x and y di↵er. Then we define the distance in

D! by

d(x, y) =

⇢ P1
i=p

ri +
P1

i=p
si if np 6= mp

|rp � sp|+
P1

i=p
ri +

P1
i=p

si if rp 6= sp
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The universal dendrite D!.
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Map of D! with the specification property

h

h

h

h

h

C

C

C

C

0

1

2

3

4

5 4

3

2

1

M

C

� : D! �! D! has the specification property.
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Now, define � : D! �! D! by

�(0) = 0,

for x 2 Dk :

�(n0, r0, ..., nk , rk , 0) =

⇢
(n0 � 1, 2r0, ..., nk � 1, 2rk , 0) if n0 > 0

(n1 � 1, 2r1, ..., nk+1 � 1, 2rk+1, 0) if n0 = 0

and for x 2 D! �
S1

i=0
Di :

�(n0, r0, ..., nk , rk , ...) =

⇢
(n0 � 1, 2r0, ..., nk � 1, 2rk , ...) if n0 > 0

(n1 � 1, 2r1, ..., nk+1 � 1, 2rk+1, ...) if n0 = 0
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For x = (n0, r0, ..., nk , rk , 0) define

p(x,m) = min{i | ni � m} and q(x,m) = max{i | ni < m}.

Let p = p(x,m) then it follows that

�m
(n0, r0, ..., nk , rk , 0) =

⇢
(np �m, 2mr0, ..., nk �m, 2mrk , 0) if nk � m
(0) if nk < m

Also

�m
(n0, r0, ..., nk , rk , ....) = (np �m, 2mr0, ..., nk �m, 2mrk , ...).
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Let ✏ > 0 and N 2 N be such that
1

2N
 ✏

4
< 1

2N�1
.

Let

x1 = (n10, r
1

0 , ..., n
1

k
, r1

k
, ...)

x2 = (n20, r
2

0 , ..., n
2

k
, r2

k
, ...)

.

.

.

xm = (nm0 , r
m

0 , ..., nm
k
, rm

k
, ...)

and n1, n2, ..., nm be positive integers.
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Let

p1 = 0 , q1 = q(x1, n1 + N)

p2 = p(x2, n1 + N) , q2 = q(x2, n1 + n2 + N)

.

.

.

pm = p(xm, n1+...nm�1+(m�1)N), qm = q(xm, n1+...+nm+(m)N)
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Now define

y = (n1p1 , r
1

p1
, ..., n1q1 , br

1

q1
, n2p2 , r

2

p2
, ..., n2q2 , br

2

q2
, ..., nmpm , r

m

pm
, ..., nmqm , br

m

qm
,b0)

where br iqi = r iqi if r
i
qi

is a dyadic rational and brqi is a the dyadic

rational of the form
i

2
niqi

+1
closest to r iqi if it is not a dyadic

rational. If pi does not exist move to pi+1. If pm does not exist,

then finish with 0.

This y will have the property that

d(f j(y), f j(x1)) < ✏ for every j 2 {0, ..., n1]

d(f j(y), f j(x2)) < ✏ for every j 2 {n1 + N, ..., n1 + n2 + N}

.

.

d(f j(y), f j(xn)) < ✏ for every

j 2 {n1+ ...+ nm�1+(m� 1)N, n1+ ...+ nm�1+ nm +(m� 1)N}.
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Let ✏ = 1/4 So N = 4 since 1/24 = ✏/4. Let

x1 = (3, 3/24, 4, 21/27, 7, 11/100, 0)

x2 = (2, 1/23, 3, 3/25, 5,⇡/1000, 0)

x3 = (11, 3/212, 15, 21/219, 19, 11/226, 26, 1/229, , , ...)

and n1 = 3, n2 = 4, and n3 = 3.
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Let ✏ = 1/4 So N = 4 since 1/24 = ✏/4. Let

x1 = (3, 1/24, 4, 11/27, 7, 11/100, 0)

x2 = (2, 1/23, 3, 3/25, 5,⇡/1000, 0)

x3 = (11, 3/212, 15, 13/219, 19, 11/226, 26, 1/229, , , ...)

and n1 = 3, n2 = 4, and n3 = 3. Let

y = (3, 1/24, 4, 11/27, 15, 13/219, 19, 11/226, 0)
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Let ✏ = 1/4 So N = 4 since 1/24 = ✏/4. Let

x1 = (3, 1/24, 4, 11/27, 7, 11/100, 0)

x2 = (2, 1/23, 3, 3/25, 5,⇡/1000, 0)

x3 = (11, 3/212, 15, 13/219, 19, 11/226, 26, 1/229, , , ...)

and n1 = 3, n2 = 4, and n3 = 3. Let

y = (3, 1/24, 4, 11/27, 15, 13/219, 19, 11/226, 0)

�(x1) = (2, 1/23, 3, 11/26, 6, 11/50, 0)

�(y) = (2, 1/23, 3, 11/26, 6, 11/50, 14, 13/218, 18, 11/225, 0)

[�3
(x1) = (0, 1/21, 1, 11/24, 4, 44/50, 0)

�3
(y) = (0, 1/21, 1, 11/24, 4, 44/50, 12, 13/216, 16, 11/223, 0)
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Let ✏ = 1/4 So N = 4 since 1/24 = ✏/4. Let

x1 = (3, 1/24, 4, 11/27, 7, 11/100, 0)

x2 = (2, 1/23, 3, 3/25, 5,⇡/1000, 0)

x3 = (11, 3/212, 15, 13/219, 19, 11/226, 26, 1/229, , , ...)

and n1 = 3, n2 = 4, and n3 = 3. Let

y = (3, 1/24, 4, 11/27, 15, 13/219, 19, 11/226, 0)

�7
(x2) = (0)

�7
(y) = (8, 13/212, 12, 11/219, 0)

[�11
(x2) = (0)

�11
(y) = (4, 21/28, 8, 11/215, 0)
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Let ✏ = 1/4 So N = 4 since 1/24 = ✏/4. Let

x1 = (3, 1/24, 4, 11/27, 7, 11/100, 0)

x2 = (2, 1/23, 3, 3/25, 5,⇡/1000, 0)

x3 = (11, 3/212, 15, 13/219, 19, 11/226, 26, 1/229, , , ...)

and n1 = 3, n2 = 4, and n3 = 3. Let

y = (3, 1/24, 4, 11/27, 15, 13/219, 19, 11/226, 0)

�15
(x3) = (0, 13/24, 4, 11/211, 11, 1/214, ...)

�15
(y) = (0, 13/24, 4, 11/211, 0)

�18
(x3) = (1, 11/28, 8, 1/211, ...)

�18
(y) = (1, 11/28, 8, 1/211, 0)
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g g g

Let bD = lim �{
bD!,�}1n=1

be an inverse limit of universal dendrites.

Since � has the specification property, the shift homeomorphism

b�(hxi i1i=1
) = hxi i1i=2

has the specification property. (Banič, Erceg,

Kennedy, and Jelić)

Since dendrites are tree-like, bD is tree-like.

In fact, bD is hereditarily decomposable,

But that is another story.
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However, we do have the following questions:

Is there a fan that admits a homeomorphism with the specification

property? In particular, does either the Cantor Fan or the Lelek

Fan admit a homeomorphism with the specification property?

If f : X �! X is positively continuum-wise fully expansive, must it

have the specification property?
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Thank You!

Christopher Mouron with Iztok Banič (University of Maribor), Goran Erceg (University of Split), Judy Kennedy (Lamar University) and Van Nall. (University of Richmond, retired)

The Specification Property of Homeomorphisms on Tree-like Continua


