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Motivation and Definitions

A continuum is a compact connected metric space.

The primary motivation to study the necessary topology of

continua that admit homeomorphisms with particular “chaotic”
properties.

In particular, | am interested in what conditions for the continuum
to be

© indecomposable
© contain an indecomposable subcontinuum

© if hereditarily decomposable, then what can be said about the
topology
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A continuum is indecomposable if every proper subcontinuum has
empty interior.

A continuum X is 1/n indecomposable if whenever {A;}"_; are a
collection of pairwise disjoint subcontinua, at least one of {A;}"_;
has empty interior.

Note: 1/2 indecomposable is also called semi-indecomposable.
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The buckethandle continuum is indecomposable.
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A 1/2 or semi-indecomposable continuum. It is the union of two
indecomposable subcontinua
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The Cantor Fan is 1/2 or semi- indecomposable. However, it does
not contain an indecomposable subcontinuum. Hence, it is
hereditarily decomposable.
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If f : X — X is a map of a continuum then:

f is fully continuum-wise expansive.

4

f has the specification property — f is mixing.
Y
f is weakly mixing.
Y

f is totally transitive.

4

f Is transitive.

4

f has sensitive dependence on initial conditions.

v
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A map f is positively continuum-wise fully expansive if for every
e > 0 and nondegenerate subcontinuum Y, there exists

N = N(e, Y) such that dy(f"(Y),X) < e forall n > N.

A map f is mixing if for every open sets U, V of X, there exists an
M such that f™(U) NV # () for all m > M.

That is, if U is open, then dy(f"(U),X) — 0 as n — oc.
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Let f : X — X be a function on metric space X. (f, X) has the
Specification Property if for every ¢ > 0 there exists a positive
integer N = N(¢) such that for any finite set of points

X1,...,Xm € X and a a set of position integers nyi, no, ..., n,, there
exists an y € X such that

d(f(y), F/(x1)) < € for every j € {0, ..., ni]
d(f(y), F(x2)) < € for every j € {ni + N, ...,n1 + no + N}

d(f(y), f/(xn)) < € for every
je{m+..+npa+mMm—-1N,m~+...+np_1+nm+(m—1)N}.
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A continuum is tree-like if it is the inverse limit of trees.
That is let f; : Tjx1 — T; be a collection of maps of tree graphs
{T:}72,. Then the inverse limit of { T}, f;} is a continuum X

:Q{T,,ﬁ}ﬁ ={(x})2; € [1;:21 Tilfilxiv1) = xi}-

¢ .
>/ /X % é 'S e oo — %ﬁ % @ © o

If x = (x;)%2, and y = (y;)$2, are two points of the inverse limit,
we define distance to be

00 dr. Xi.Yi
d(X,y) — Zi:l E (2i y)'
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(Kato) If X is a continuum that admits a positively fully
continuum-wise expansive homeomorphism then X is
indecomposable.
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(Kato) If X is a continuum that admits a positively fully
continuum-wise expansive homeomorphism then X is
indecomposable.

The following theorems are by Jorge Martinez-Montejano and
Verdnica Martinez-de-la-Vega and myself.

(M,M,MV) If X is a G-like continuum that admits a mixing
homeomorphism, then X is indecomposable.

A continuum is G-like if it is the inverse limit of the same graph G.

(M,M,MV) If X is a tree-like continuum that admits a mixing
homeomorphism, then X is semi-indecomposable.
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Also, we have:

(M,M,MV) There exists a hereditarily decomposable tree-like
continuum that admits a mixing homemorphism.

Recently by Iztok Bani&, Goran Erceg, Judy Kennedy, Van Nall and
myself:

(B,E,K,M,N) There exists an uncountable collection of
non-homeomorphic smooth fans that admit mixing
homeomorphisms.

Included in these are the Cantor Fan and the Lelek Fan. Also, we
have

(B,E,K,M,N) There exists an uncountable collection of
non-homeomorphic non-smooth fans that admit mixing
homeomorphisms.

Christopher Mouron with lztok Bani¢ (University of Maribor), Go



If f : X — X is a map of a tree-like continuum then:

f is fully continuum-wise expansive —> X Is indecomposable

f has the specification property

4

f is mixing —> X is semi-indecomposable. X can be a fan. If X
is G-like then X is indecomposable.
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Main result

There exists a hereditarily decomposable tree-like continuum that
admits a homeomorphism with the specification property.

Note: This shows that the specification property does not imply
fully continuum-wise expansive.

My construction is by using the shift homeomorphism on the
inverse limit of universal dendrites with the same bonding map
that itself has the specification property.

\ =

The universal dendrite D,,.
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Main result

There exists a hereditarily decomposable tree-like continuum that
admits a homeomorphism with the specification property.

|
L GF

The universal dendrite D,,.
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Let [0, 55], be an arc of length 2 for n € NU {0} = No.

Let Fi = (52 [0, ]n/{0} be a “harmonic” fan of size k

(Diameter is 2—1k)
The identification point O in Fj is called the root of Fi. Let

0=1(0,0,0,...). We denote a point x € Fj by

Y { (k,0) if x is the root of Fy
(n07r070) If o < (07 2%]”0
" g & lq
o/% ?b A F
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Now let D(a, b) be the dyadic rationals on (a, b), that is

D(a, b) = {2—'[1 € (a,b) | P is an odd integer and n € Np}.

Let Dy = Fy, with 0 as the root and for each (ng, £ >k 0.°0), where pg
is odd, in [0, 575 ], identify the root from a copy of Fy, to
(n07 ko 3 O)

Define the dyadic points for Dy by

D(Do) — {(no, I’(),G) e Dy ‘ o € D(O, 1)}

and let

=rRul) U F

neNgy Po_
0 >0 ED(DQ)

with the above identification.
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Y2
Y
2 =
'Ug F \ = =
" "
(3 “ '/% Fg ¢ = = '/?
'/% '/% F ¢ '/(‘ '/% F '/(‘ i —\
'/{L '/,L ‘/‘L : ‘L V‘L ‘/,‘ ‘/‘L Fa FI
¢ . . o ¢ . . e
— e
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We denote a point x = (ng, £, n1, r1,0) € Dy — Dy where
(n1,n,0) is in a copy of F,, whose root is identified to (ng, 2%, 0)
In Do.

Continuing inductively, suppose that Dy, D1, ..., D, have been

found. Then for each

(no, 24, N1, 25 5 ooy N, 5921, 0) € Dy — D1, identify the root

from a copy of an+1.

Define the dyadic points for D — D1 by
D(Dm) = {(no, am» - Nm), 5t ,0)€ Dy — D1 | rm € D(0,1)1.

Let
Dm+1 — D U U U Nm+1
n>mxeD(Dpm)
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We denote a point

pO Pm

n oy Nmy, PR Nm+1, rm—|—170) S Dm—l—l — Dp,
2 2

x= (o

where (nm+1, rm+1,6) s in a copy of Fp,_ ., whose root is identified

to (no, 51y s Mmy 2”m+1 : O) in Dy, — Dy 1.

Note: if r,, is not a dyadic rational, then r,, must be followed by 0.
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Let D, =2y Di. If x € D,, — ;= Di, then x is any sequence of

the form

(n07 E? ni, oyt Nm, M1

where p; isodd and ng < n1 < ...np < ...

If x = (no, Foy eey Ny i, O) and y = (mo,So, ceey My, Sie s O) Let p be
the first index that x and y differ. Then we define the distance in
D,, by

Doimp it D2, Si if n, £ m,
rp — Spl + Zi:p ri + Zi:p s ifrp # sp

d(x,y) = {
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d'am \

The universal dendrite D,,.
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Map of D, with the specification property

o : D, — D, has the specification property.
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Now, define o : D, — D,, by
o(0) =0,

for x € Dy:

(no, n Nk, rk, 0) = (no —1,2r0, ..., i — 1,2, 0) if ng >0
o\no, ro, --., Ny, g, o (”1 — ]_,2[’]_7 vory nk—l—l — 1,2rk_|_1,6) |f ng = O

and for x € D,, — ;2 Di:

(no —1,2r9,...,00 — 1,21y, ) if ng >0

o\No, gy «... Ny Fgey ... ) = '
( 05 10y «-5 ks Tk ) { (n1—1,2F1,---,”k+1—1a2rk+1a--°) if nO:O
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For x = (ng, ro, ..., Nk, rx, 0) define

p(x,m) = min{i | n; > m} and q(x, m) = max{i | nj < m}.
Let p = p(x, m) then it follows that
o™ (ng, ro, ..., N, ric, 0) =

(n, — m,2Mry, ..., ng — m,2™r., 0)  if ng > m
(0) if ne < m

" (N0, 1y vy Nicy My ) = (Np — M, 219, oy e — M, 27y, ).
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Let ¢ > 0 and N € N be such that zi,\, <z < 2/\/1_1-

Let

_ 1 1 1 1
X1 = (no, ros ooy Niey M )

(22 2 2
Xo = (NG, s eees Ny Ty ---)

m m m m
Xm = (NG 1y s ey DL 1Ry oet)

and ni, no, ..., ny, be positive integers.
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Let
p1=0 . g1 = q(x1,n + N)

p2 = p(x2,n1 + N), g2 =q(x2,n + nx+ N)

Pm = P(Xm, m~+...nm—_1+(m=1)N), gm = q(Xm, m+...+nm+(m)N)
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Now define

L 1 1 1 =~ 2 2 2 P m m m -m A
y — (np17 Fors s Nagys Tays Moy Toys ++os Mg Ty oo Mo s Ty ovey Mgt s T, 0)
where 7! rg, = r if r IS a dyadic ratlonal and g, is a the dyadic

rational of the form —— closest to r if it is not a dyadic

2 q
rational. If p; does not exist move to p;.1. If p,, does not exist,

then finish with 0.
This y will have the property that

+1

d(f(y), f/(x1)) < € for every j € {0, ..., n1]

d(f(y), f/(x2)) < € for every j € {ni + N,...,n; + no + N}

d(f(y), F/(x,)) < € for every
je{m+..+np1+(mMm=1N,nm+..+nm_1+nm+(m—-1)N}.
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Let e = 1/4 So N = 4 since 1/2* = ¢/4. Let
x1 = (3,3/2%,4,21/27,7,11/100, 0)
x, = (2,1/233,3/2°.5,7/1000, 0)
x3 = (11,3/2%2,15,21/21%19,11/2%°,26,1/2%°, . ...)

and ny =3, n =4, and n3 = 3. NENZT | Ry=a ¢, 21

Witn . +2NV=:15 pz(fc O
V\)"'V\HV\-SA?)I\“:?,’Z ’\32;1‘ 2572
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Let e = 1/4 So N = 4 since 1/2* = ¢/4. Let
x1 = (3,1/2%,4,11/27,7,11/100, 0)
x> = (2,1/2°,3,3/2°,5,7,/1000,0)
x3 = (11,3/2%%,15,13/219,19,11/2%°,26,1/2%°, ...
and n1 = 3, np = 4, and n3 = 3. Let
y = (3,1/2% 4,11/27,15,13/2%,19,11/2°°,0)
NEN=F | B=0 9, 2

Wit t2N =15 pufc ONg
V\)"'V\\'H\-SA'SI\IZL'Z ‘32:1‘ ZB: 2
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x; = (3,1/2%,4,11/27,7,11/100, 0)

x, = (2,1/233,3/2°,5,7/1000, 0)
x3 = (11,3/2%2,15,13/219,19,11/2%°,26,1/2%°, ...

and n1 = 3, np = 4, and n3 = 3. Let

y =(3,1/2% 4,11/27,15,13/2%°,19,11/2°°,0)

o(x1) = (2,1/23,3,11/2°,6,11/50,0)
o(y) =(2,1/23,3,11/2°,6,11/50,14,13/2'%,18,11/2°°,0)
o3(x1) = (0,1/2',1,11/p* 4,44/50,0)

o3(y) = (0,1/2,1,11/2% 4,44 /50,12,13/2%°,16,11/2%3,0)
NEN=F | P=0,¢, 2

Winf 2Ny B ¢, Dg
MAINAINZ2D 2| g0 2
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x; = (3,1/2%,4,11/27,7,11/100, 0)

x, = (2,1/233,3/2°,5,7/1000, 0)
x3 = (11,3/2%2,15,13/219,19,11/2%°,26,1/2%°, ...

and n1 = 3, np = 4, and n3 = 3. Let

y =(3,1/2% 4,11/27,15,13/2%°,19,11/2°°,0)

o’ (x2) = (0)
o'(y) = (8,13/21,12,11/2%°,0)
o (x2) = (0) |

11 8 15 A

oM (y) = (4,21/2°,8,11/2'%,0)
‘\1+qu . 13'-.0)?' :‘
Wtn 2Ny pz‘fc ONg
MAvitn A3INZ22 k=1, 25:2
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x; = (3,1/2%,4,11/27,7,11/100, 0)
x, = (2,1/233,3/2°,5,7/1000, 0)
x3 = (11,3/2%2,15,13/219,19,11/2%°,26,1/2%°, ...

and n1 = 3, np = 4, and n3 = 3. Let

y =(3,1/2% 4,11/27,15,13/2%°,19,11/2°°,0)

ol°(x3) = (0,13/2% 4,11/2* 11,1/2%, )
o°(y) = (0,13/2%,4,11/2'1,0)
o18(x3) = (1,11/28,8,1/2% )

UlS(y) — (17 11/287 87 1/21176) ‘\‘-H\)T-? ’ P,—.a)?l o |

Withn . +2N=1§ pltfc ONgE
MAvin . a3INz2R =, 2572
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AT VI R T

Let D = |Im{Dw,O'} ° ; be an inverse limit of universal dendrites.

Since o has the specification property, the shift homeomorphism
a((xi)21) = (xi)2, has the specification property. (Bani¢, Erceg,
Kennedy, and Jellc)

Since dendrites are tree-like, 5 Is tree-like.
In fact, D is hereditarily decomposable,

But that is another story.
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However, we do have the following questions:

Is there a fan that admits a homeomorphism with the specification
property? In particular, does either the Cantor Fan or the Lelek
Fan admit a homeomorphism with the specification property?

If f: X — X is positively continuum-wise fully expansive, must it
have the specification property?
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Thank You!
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