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Almost periodic functions in the sense of Bohr

Definition

A set E ⊆ R is said to be relatively dense in the sense of Bohr if
there exists a number l > 0 such that in every open interval of the
lenth l , contained in R, there exists at least one element of E .

Definition

A continuous function f : R → R is said to be almost
periodic in the sense of Bohr if for every ε > 0 the set{
τ ∈ R : supt∈R|f (t + τ) − f (t)| ¬ ε

}
is relatively dense in the

sense of Bohr.
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Almost periodic functions in the sense of Bohr

Theorem (Bochner’s Criterion)

A continuous function f : R→ R is almost periodic in the sense of
Bohr if and only if for every sequence (τn)n∈N, there exists a subse-
quence (τnk )k∈N such that (f (t + τnk ))k∈N is uniformly convergent
on R.



Stepanov almost periodic functions

Let L be the σ-algebra of subsets of R which are measurable in the
Lebesgue sense, µ – the Lebesgue measure on L and let L0(R) be the
space of all L-measurable functions f : R→ R.

By Lploc(R) we will denote the set of all functions R→ R measurable
in the Lebesgue sense, p-th power of absolute value of which is
integrable in the Lebesgue sense over every bounded subset of R.
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Stepanov almost periodic functions
For x , y ∈ Lploc(R), let us define the following quantity:

DSp(x , y) = sup
u∈R

(

∫ u+1

u
|x(t)− y(t)|pdt)

1
p .

It is easily to check that DSp defines a metric on the set

{x ∈ Lploc : sup
u∈R

∫ u+1

u
|x(t)|pdt <∞}.

Definition

A function x ∈ Lploc(R), p  1, is said to be Sp-almost periodic
(briefly: Sp-a.p.), if for every ε > 0, the set

{τ ∈ R : DSp(xτ , x) ¬ ε}

is relatively dense in the sense of Bohr.
In the case of S1-a.p. functions we will simply use notation: S-a.p.
and we will denote the space of such functions by S(R).
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µ-almost periodic functions

Definition

A function f ∈ L0(R) is said to be µ-almost periodic if for every
ε > 0 and η > 0, the set{

τ ∈ R : sup
u∈R

µ
(
{t ∈ [u, u + 1] : |f (t + τ)− f (t)|  η}

)
¬ ε

}
is relatively dense in the sense of Bohr. By M(R) we will denote the
set of all µ-almost periodic functions.



µ-almost periodic functions
Let us consider the function f (t) = 2 + cos(t) + cos(

√
2t) for t ∈ R.

• The function f is almost periodic in the sense of Bohr.

• The function 1/f is µ-almost periodic and unbounded.

f (t) = 2 + cos(t) + cos(
√

2t)
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µ-almost periodic functions

f (t) =
1

2 + cos(t) + cos(
√

2t)



µ-almost periodic functions

For η > 0 and f , g ∈ L0(R) let us define

D(η; f , g):= sup
u∈R

µ
(
{t ∈ [u, u + 1] : |f (t)− g(t)|  η}

)
.

Definition

A sequence (fn)n∈N, where fn ∈ L0(R) for n ∈ N, is said to be
D-convergent to a function f ∈ L0(R) if the following condition is
satisfied:

∀ε > 0 ∀η > 0 ∃N ∈ N ∀n > N D(η; fn, f ) < ε.

The function f is said to be the D-limit of the sequence (fn)n∈N.
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Properties of µ-almost periodic functions

• Let (λn)n∈N be any sequence of positive numbers, convergent to
zero. Let us define

L0b(R)=

{
f ∈ L0(R) : lim

n→∞
sup
u∈R

µ
({
t ∈ [u, u+1] : |f (t)| 1

λn

})
=0
}
.

If f is µ-almost periodic, then f ∈ L0b(R).

• If f , g are µ-almost periodic functions, then f ± g and f · g are also
µ-almost periodic functions.
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Properties of µ-almost periodic functions

• Let F : Ω→ C, where Ω = {t + iy ∈ C : −a < y < a}, a > 0, be
a bounded holomorphic function. Let us assume that the function
g : R→ R given by the formula g(t) = F (t) for t ∈ R, is almost
periodic in the sense of Bohr. Then the function f defined by the
formula

f (t) =


1

g(t)
for t ∈ R such that g(t) 6= 0,

0 for t ∈ R such that g(t) = 0,

is µ-almost periodic.

• If a sequence (fn)n∈N of µ-almost periodic functions is D-convergent
to a function f ∈ L0(R), then f ∈ M(R).
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The space of µ-almost periodic functions

Definition

The functional
·: L0(R)→ R+ is defined by the formulaf= sup
u∈R

∫ u+1

u

|f (t)|
1 + |f (t)|

dt, where f ∈ L0(R).

Using the above functional one can define, in a classical way, the
metric on L0(R) which restricted to L0b(R) is complete. Moreover,
one can prove that a sequence (fn)n∈N, where fn ∈ L0(R) for n ∈ N,
is D-convergent to a function f ∈ L0(R) if and only if (fn)n∈N is
convergent to f in view of the metric generated by that functional.

The space
(
M(R),

·) is a closed subspace of a complete space(
L0b(R),

·), what obviously implies that it is a complete space.
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Autonomous superposition operators in the space of µ-a.p.
functions

Let f : R → R and let F denotes the autonomous superposition
operator defined for any function x : R→ R by the formula

F (x)(t) = f (x(t)),

where t ∈ R.

Theorem

F (L0b(R)) ⊂ L0b(R) if and only if f is a locally bounded function.

Theorem

F is a continuous on L0b(R) if and only if it is generated by a continuous
function f .
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The operator F generated by a function f is a bijection on M(R) if
and only if the function f : R→ R is a homeomorphism.
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For a continuous function f : R→ R, let us define

S(f ) := {x ∈ M(R) : f ◦ x is S-a.p.}

Theorem

For any unbounded continuous function f , it holds S(f ) 6= M(R).

Theorem

For any µ-a.p. function x , there exists a homeomorphism f : R→ R
such that f ◦ x is S-a.p.

Theorem

For any µ-a.p. function x , there exist an S-a.p. function y and a
continuous function z : R→ R such that x = z ◦ y .
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Convolution of µ-almost periodic functions

Definition

Let f , g : R→ R be measurable in the Lebesgue sense. Define

(f ∗ g)(t) =

∫ +∞

−∞
f (t − s)g(s)ds,

provided the above integral in the Lebesgue sense exists.



Convolution of µ-almost periodic functions

Remark

Convolution of a µ-almost periodic function with a function integrable
in the Lebesgue sense may not exist.

Remark

The existence of convolution of a µ-almost periodic function with
a function integrable in the Lebesgue sense does not have to imply
that it is a µ-almost periodic function.
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Convolution of µ-almost periodic functions

Definition

The function gλ : R→ R, where λ < 0, is defined by the formula

gλ(t) =

eλt for t  0,

0 for t < 0.

Remark

For any function f : R→ R locally integrable in the Lebesgue sense
we have

(f ∗gλ)(t) =

∫ +∞

−∞
f (s)gλ(t−s)ds =

∫ t

−∞
f (s)eλ(t−s)ds = eλt

∫ t

−∞
f (s)e−λsds.
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Convolution of µ-almost periodic functions

Theorem

If a µ-almost periodic function f satisfies the condition

∀ε > 0 ∃δ > 0 ∀u ∈ R ∀A ⊆ [u, u + 1]

µ(A) ¬ δ =⇒
∫
A
|f (s)|ds ¬ ε,

then the convolution f ∗ gλ exists for every t ∈ R and it is an almost
periodic function in the sense of Bohr.



Convolution of µ-almost periodic functions

Theorem

Let f be a nonnegative µ-almost periodic function. If the convolution
f ∗ gλ exists and

sup
u∈R

∫ u+1

u
f (s)ds = +∞,

then it is not a µ-almost periodic function.



Convolution of µ-almost periodic functions

Theorem

For every λ < 0 it holds

lim
t→+∞

eλt

2 + cos(t) + cos(
√

2t)
= 0.

f (t) =
e−t

2 + cos(t) + cos(
√

2t)
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Convolution of µ-almost periodic functions

Theorem

For every function f : R → (0,+∞), every a ∈ R and every ε > 0
there exist α ∈ R such that

|a− α| < ε and lim sup
t→+∞

f (t)

2 + cos(t) + cos(αt)
= +∞.



Convolution of µ-almost periodic functions

Theorem

The set
⋃
λ<0 Sλ, where

Sλ = {α ∈ R \Q :
1

2 + cos(·) + cos(α·)
∗ gλ exists},

is of the first Baire category. Moreover,
⋂
λ<0 Sλ and Sλ0 , for λ0 < 0,

are of the first Baire category. Thereby
⋂
λ<0 S

′
λ, S ′λ0 , for λ0 < 0,

and
⋃
λ<0 S

′
λ, where S ′λ = R \ Sλ, are of the second Baire category.



Convolution of µ-almost periodic functions

Theorem

For every a ∈ R and every ε > 0 there exists α ∈ R \Q such that for
all λ < 0

|a− α| < ε and
∫ 0
−∞

e−λt

2 + cos t + cos (αt)
dt = +∞.

In other words, the set⋂
λ<0

S ′λ =
{
α ∈ R\Q :

1
2 + cos ·+ cos (α·)

∗gλ does not exist for all λ < 0
}

is dense in R. Thereby for λ0 < 0 the sets S ′λ0 and
⋃
λ<0 S

′
λ are also

dense in R.



Convolution of µ-almost periodic functions

Theorem⋂
λ<0 Sλ is a set with the cardinality of the continuum. Moreover, the

set
⋂
λ<0 S

′
λ is also with the cardinality of the continuum. Thereby⋃

λ<0 Sλ and
⋃
λ<0 S

′
λ are also with the cardinality of the continuum.



Applications
Let us consider the first order linear differential equation of the form

x ′(t) = λx(t) + f (t), t ∈ R,

where λ < 0 and f : R → R is a continuous µ-almost periodic
function.
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Let us consider the first order linear differential equation of the form

x ′(t) = λx(t) + f (t), t ∈ R,

where λ < 0 and f : R → R is a continuous µ-almost periodic
function.

By (C) we denote the following function

x(t) =

∫ t

−∞
eλ(t−s)f (s)ds, t ∈ R.



Applications
Let us consider the first order linear differential equation of the form

x ′(t) = λx(t) + f (t), t ∈ R,

where λ < 0 and f : R → R is a continuous µ-almost periodic
function.

Theorem

Under the above asumptions one of the following claims holds:

• the function (C) is µ-almost periodic solution to the above
equation;

• the function (C) is a solution to the above equation, however it
is not µ-almost periodic;

• the function (C) is not a solution to the above equation.
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