On topological properties connected with some nonlinear operators in spaces of almost periodic functions

Dariusz Bugajewski

Department of Mathematics and Computer Science Adam Mickiewicz University, Poznań, Poland

Coimbra, July 8-12, 2024

Almost periodic functions in the sense of Bohr

Definition

A set $E \subseteq \mathbb{R}$ is said to be relatively dense in the sense of Bohr if there exists a number l > 0 such that in every open interval of the lenth l, contained in \mathbb{R} , there exists at least one element of E.

Almost periodic functions in the sense of Bohr

Definition

A set $E \subseteq \mathbb{R}$ is said to be relatively dense in the sense of Bohr if there exists a number l > 0 such that in every open interval of the lenth l, contained in \mathbb{R} , there exists at least one element of E.

Definition

A continuous function $f: \mathbb{R} \to \mathbb{R}$ is said to be almost periodic in the sense of Bohr if for every $\varepsilon > 0$ the set $\{\tau \in \mathbb{R} : \sup_{t \in \mathbb{R}} |f(t + \tau) - f(t)| \leq \varepsilon\}$ is relatively dense in the sense of Bohr.

Almost periodic functions in the sense of Bohr

Theorem (Bochner's Criterion)

A continuous function $f : \mathbb{R} \to \mathbb{R}$ is almost periodic in the sense of Bohr if and only if for every sequence $(\tau_n)_{n \in \mathbb{N}}$, there exists a subsequence $(\tau_{n_k})_{k \in \mathbb{N}}$ such that $(f(t + \tau_{n_k}))_{k \in \mathbb{N}}$ is uniformly convergent on \mathbb{R} .

Let \mathcal{L} be the σ -algebra of subsets of \mathbb{R} which are measurable in the Lebesgue sense, μ – the Lebesgue measure on \mathcal{L} and let $L^0(\mathbb{R})$ be the space of all \mathcal{L} -measurable functions $f : \mathbb{R} \to \mathbb{R}$.

Let \mathcal{L} be the σ -algebra of subsets of \mathbb{R} which are measurable in the Lebesgue sense, μ – the Lebesgue measure on \mathcal{L} and let $L^0(\mathbb{R})$ be the space of all \mathcal{L} -measurable functions $f : \mathbb{R} \to \mathbb{R}$.

By $L^p_{loc}(\mathbb{R})$ we will denote the set of all functions $\mathbb{R} \to \mathbb{R}$ measurable in the Lebesgue sense, p-th power of absolute value of which is integrable in the Lebesgue sense over every bounded subset of \mathbb{R} .

For $x, y \in L^{p}_{loc}(\mathbb{R})$, let us define the following quantity:

$$D_{S^p}(x,y) = \sup_{u \in \mathbb{R}} (\int_u^{u+1} |x(t) - y(t)|^p dt)^{\frac{1}{p}}.$$

It is easily to check that D_{S^p} defines a metric on the set

$$\{x \in L^p_{loc}: \sup_{u \in \mathbb{R}} \int_u^{u+1} |x(t)|^p dt < \infty\}.$$

For $x, y \in L^{p}_{loc}(\mathbb{R})$, let us define the following quantity:

$$D_{S^p}(x,y) = \sup_{u \in \mathbb{R}} (\int_u^{u+1} |x(t) - y(t)|^p dt)^{\frac{1}{p}}.$$

It is easily to check that D_{S^p} defines a metric on the set

$$\{x \in L^p_{loc}: \sup_{u \in \mathbb{R}} \int_u^{u+1} |x(t)|^p dt < \infty\}.$$

Definition

A function $x \in L^p_{loc}(\mathbb{R})$, $p \ge 1$, is said to be S^p -almost periodic (briefly: S^p -a.p.), if for every $\epsilon > 0$, the set

$$\{\tau \in \mathbb{R} \colon D_{S^p}(x_{\tau}, x) \leq \epsilon\}$$

is relatively dense in the sense of Bohr.

For $x, y \in L^{p}_{loc}(\mathbb{R})$, let us define the following quantity:

$$D_{S^p}(x,y) = \sup_{u \in \mathbb{R}} (\int_u^{u+1} |x(t) - y(t)|^p dt)^{\frac{1}{p}}.$$

It is easily to check that D_{S^p} defines a metric on the set

$$\{x \in L^p_{loc}: \sup_{u \in \mathbb{R}} \int_u^{u+1} |x(t)|^p dt < \infty\}.$$

Definition

A function $x \in L^p_{loc}(\mathbb{R})$, $p \ge 1$, is said to be S^p -almost periodic (briefly: S^p -a.p.), if for every $\epsilon > 0$, the set

$$\{\tau \in \mathbb{R} \colon D_{S^p}(x_{\tau}, x) \leq \epsilon\}$$

is relatively dense in the sense of Bohr.

In the case of S^{1} -a.p. functions we will simply use notation: S-a.p. and we will denote the space of such functions by $S(\mathbb{R})$.

Definition

A function $f \in L^0(\mathbb{R})$ is said to be μ -almost periodic if for every $\varepsilon > 0$ and $\eta > 0$, the set

$$\left\{\tau \in \mathbb{R} : \sup_{u \in \mathbb{R}} \mu(\left\{t \in [u, u+1] : |f(t+\tau) - f(t)| \ge \eta\right\}) \le \varepsilon\right\}$$

is relatively dense in the sense of Bohr. By $M(\mathbb{R})$ we will denote the set of all μ -almost periodic functions.

Let us consider the function $f(t) = 2 + \cos(t) + \cos(\sqrt{2}t)$ for $t \in \mathbb{R}$.

- The function *f* is almost periodic in the sense of Bohr.
- The function 1/f is μ -almost periodic and unbounded.

Let us consider the function $f(t) = 2 + \cos(t) + \cos(\sqrt{2}t)$ for $t \in \mathbb{R}$.

- The function *f* is almost periodic in the sense of Bohr.
- The function 1/f is μ -almost periodic and unbounded.

 $f(t) = 2 + \cos(t) + \cos(\sqrt{2}t)$

$\mu\textsc{-}\mathsf{almost}$ periodic functions

For $\eta > 0$ and $f, g \in L^0(\mathbb{R})$ let us define

$$D(\eta; f, g) := \sup_{u \in \mathbb{R}} \mu(\{t \in [u, u+1] : |f(t) - g(t)| \ge \eta\}).$$

For $\eta > 0$ and $f, g \in L^0(\mathbb{R})$ let us define

$$D(\eta; f, g) := \sup_{u \in \mathbb{R}} \mu(\{t \in [u, u+1] : |f(t) - g(t)| \ge \eta\}).$$

Definition

A sequence $(f_n)_{n \in \mathbb{N}}$, where $f_n \in L^0(\mathbb{R})$ for $n \in \mathbb{N}$, is said to be *D*-convergent to a function $f \in L^0(\mathbb{R})$ if the following condition is satisfied:

$$\forall \varepsilon > 0 \quad \forall \eta > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad D(\eta; f_n, f) < \varepsilon.$$

The function f is said to be the D-limit of the sequence $(f_n)_{n \in \mathbb{N}}$.

 Let (λ_n)_{n∈ℕ} be any sequence of positive numbers, convergent to zero. Let us define

$$L_b^0(\mathbb{R}) = \left\{ f \in L^0(\mathbb{R}) : \lim_{n \to \infty} \sup_{u \in \mathbb{R}} \mu\left(\left\{t \in [u, u+1] : |f(t)| \ge \frac{1}{\lambda_n}\right\}\right) = 0 \right\}.$$

If f is μ -almost periodic, then $f \in L_b^0(\mathbb{R})$.

 Let (λ_n)_{n∈ℕ} be any sequence of positive numbers, convergent to zero. Let us define

$$L_b^0(\mathbb{R}) = \left\{ f \in L^0(\mathbb{R}) : \lim_{n \to \infty} \sup_{u \in \mathbb{R}} \mu\left(\left\{ t \in [u, u+1] : |f(t)| \ge \frac{1}{\lambda_n} \right\}\right) = 0 \right\}.$$

If f is μ -almost periodic, then $f \in L_b^0(\mathbb{R})$.

• If f, g are μ -almost periodic functions, then $f \pm g$ and $f \cdot g$ are also μ -almost periodic functions.

 Let F: Ω → C, where Ω = {t + iy ∈ C : -a < y < a}, a > 0, be a bounded holomorphic function. Let us assume that the function g: R → R given by the formula g(t) = F(t) for t ∈ R, is almost periodic in the sense of Bohr. Then the function f defined by the formula

$$f(t) = egin{cases} rac{1}{g(t)} & ext{ for } t \in \mathbb{R} ext{ such that } g(t)
eq 0, \ 0 & ext{ for } t \in \mathbb{R} ext{ such that } g(t) = 0, \end{cases}$$

is μ -almost periodic.

 Let F: Ω → C, where Ω = {t + iy ∈ C : -a < y < a}, a > 0, be a bounded holomorphic function. Let us assume that the function g: R → R given by the formula g(t) = F(t) for t ∈ R, is almost periodic in the sense of Bohr. Then the function f defined by the formula

$$f(t) = egin{cases} rac{1}{g(t)} & ext{ for } t \in \mathbb{R} ext{ such that } g(t)
eq 0, \ 0 & ext{ for } t \in \mathbb{R} ext{ such that } g(t) = 0, \end{cases}$$

is μ -almost periodic.

 If a sequence (f_n)_{n∈ℕ} of μ-almost periodic functions is D-convergent to a function f ∈ L⁰(ℝ), then f ∈ M(ℝ).

The space of μ -almost periodic functions

Definition

The functional $|\cdot| : L^0(\mathbb{R}) \to \mathbb{R}_+$ is defined by the formula $|f| = \sup_{u \in \mathbb{R}} \int_u^{u+1} \frac{|f(t)|}{1+|f(t)|} dt$, where $f \in L^0(\mathbb{R})$.

The space of μ -almost periodic functions

Definition

The functional $|\cdot| : L^0(\mathbb{R}) \to \mathbb{R}_+$ is defined by the formula $|f| = \sup_{u \in \mathbb{R}} \int_u^{u+1} \frac{|f(t)|}{1+|f(t)|} dt$, where $f \in L^0(\mathbb{R})$.

Using the above functional one can define, in a classical way, the metric on $L^0(\mathbb{R})$ which restricted to $L^0_b(\mathbb{R})$ is complete. Moreover, one can prove that a sequence $(f_n)_{n\in\mathbb{N}}$, where $f_n \in L^0(\mathbb{R})$ for $n \in \mathbb{N}$, is D-convergent to a function $f \in L^0(\mathbb{R})$ if and only if $(f_n)_{n\in\mathbb{N}}$ is convergent to f in view of the metric generated by that functional.

The space of μ -almost periodic functions

Definition

The functional $|\cdot| : L^0(\mathbb{R}) \to \mathbb{R}_+$ is defined by the formula $|f| = \sup_{u \in \mathbb{R}} \int_u^{u+1} \frac{|f(t)|}{1+|f(t)|} dt$, where $f \in L^0(\mathbb{R})$.

Using the above functional one can define, in a classical way, the metric on $L^0(\mathbb{R})$ which restricted to $L^0_b(\mathbb{R})$ is complete. Moreover, one can prove that a sequence $(f_n)_{n\in\mathbb{N}}$, where $f_n \in L^0(\mathbb{R})$ for $n \in \mathbb{N}$, is D-convergent to a function $f \in L^0(\mathbb{R})$ if and only if $(f_n)_{n\in\mathbb{N}}$ is convergent to f in view of the metric generated by that functional.

The space $(M(\mathbb{R}), |\cdot|)$ is a closed subspace of a complete space $(L_b^0(\mathbb{R}), |\cdot|)$, what obviously implies that it is a complete space.

Let $f : \mathbb{R} \to \mathbb{R}$ and let F denotes the autonomous superposition operator defined for any function $x : \mathbb{R} \to \mathbb{R}$ by the formula

F(x)(t)=f(x(t)),

where $t \in \mathbb{R}$.

Let $f : \mathbb{R} \to \mathbb{R}$ and let F denotes the autonomous superposition operator defined for any function $x : \mathbb{R} \to \mathbb{R}$ by the formula

F(x)(t) = f(x(t)),

where $t \in \mathbb{R}$.

Theorem $F(L_b^0(\mathbb{R})) \subset L_b^0(\mathbb{R})$ if and only if f is a locally bounded function.

Let $f : \mathbb{R} \to \mathbb{R}$ and let F denotes the autonomous superposition operator defined for any function $x : \mathbb{R} \to \mathbb{R}$ by the formula

F(x)(t) = f(x(t)),

where $t \in \mathbb{R}$.

Theorem $F(L_b^0(\mathbb{R})) \subset L_b^0(\mathbb{R})$ if and only if f is a locally bounded function.

Theorem

F is a continuous on $L_b^0(\mathbb{R})$ if and only if it is generated by a continuous function *f*.

Theorem

 $F(M(\mathbb{R})) \subset M(\mathbb{R})$ if and only if f is a continuous function.

Theorem

 $F(M(\mathbb{R})) \subset M(\mathbb{R})$ if and only if f is a continuous function.

Theorem

F is a continuous operator on $M(\mathbb{R})$ if and only if f is a continuous function.

Theorem

 $F(M(\mathbb{R})) \subset M(\mathbb{R})$ if and only if f is a continuous function.

Theorem

F is a continuous operator on $M(\mathbb{R})$ if and only if f is a continuous function.

Theorem

The operator F generated by a function f is a bijection on $M(\mathbb{R})$ if and only if the function $f: \mathbb{R} \to \mathbb{R}$ is a homeomorphism.

For a continuous function $f : \mathbb{R} \to \mathbb{R}$, let us define

$$S(f) := \{x \in M(\mathbb{R}) \colon f \circ x \text{ is S-a.p.}\}$$

For a continuous function $f : \mathbb{R} \to \mathbb{R}$, let us define

$$S(f) := \{x \in M(\mathbb{R}) \colon f \circ x \text{ is } S-a.p.\}$$

Theorem

For any unbounded continuous function f, it holds $S(f) \neq M(\mathbb{R})$.

For a continuous function $f : \mathbb{R} \to \mathbb{R}$, let us define

$$S(f) := \{x \in M(\mathbb{R}) \colon f \circ x \text{ is S-a.p.}\}$$

Theorem

For any unbounded continuous function f, it holds $S(f) \neq M(\mathbb{R})$.

Theorem

For any μ -a.p. function x, there exists a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ such that $f \circ x$ is S-a.p.

For a continuous function $f : \mathbb{R} \to \mathbb{R}$, let us define

$$S(f) := \{x \in M(\mathbb{R}) \colon f \circ x \text{ is S-a.p.}\}$$

Theorem

For any unbounded continuous function f, it holds $S(f) \neq M(\mathbb{R})$.

Theorem

For any μ -a.p. function x, there exists a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ such that $f \circ x$ is S-a.p.

Theorem

For any μ -a.p. function x, there exist an S-a.p. function y and a continuous function $z \colon \mathbb{R} \to \mathbb{R}$ such that $x = z \circ y$.

Definition

Let $f,g:\mathbb{R} o\mathbb{R}$ be measurable in the Lebesgue sense. Define $(f*g)(t)=\int_{-\infty}^{+\infty}f(t-s)g(s)ds,$

provided the above integral in the Lebesgue sense exists.

Remark

Convolution of a $\mu\text{-almost}$ periodic function with a function integrable in the Lebesgue sense may not exist.

Remark

Convolution of a μ -almost periodic function with a function integrable in the Lebesgue sense may not exist.

Remark

The existence of convolution of a μ -almost periodic function with a function integrable in the Lebesgue sense does not have to imply that it is a μ -almost periodic function.

Definition

The function $g_{\lambda} \colon \mathbb{R} \to \mathbb{R}$, where $\lambda < 0$, is defined by the formula

$$g_\lambda(t) = egin{cases} e^{\lambda t} & ext{ for } t \geqslant 0, \ 0 & ext{ for } t < 0. \end{cases}$$

Definition

The function $g_{\lambda} \colon \mathbb{R} \to \mathbb{R}$, where $\lambda < 0$, is defined by the formula

$$g_\lambda(t) = egin{cases} e^{\lambda t} & ext{ for } t \geqslant 0, \ 0 & ext{ for } t < 0. \end{cases}$$

Remark

For any function $f:\mathbb{R}\to\mathbb{R}$ locally integrable in the Lebesgue sense we have

$$(f*g_{\lambda})(t)=\int_{-\infty}^{+\infty}f(s)g_{\lambda}(t-s)ds=\int_{-\infty}^{t}f(s)e^{\lambda(t-s)}ds=e^{\lambda t}\int_{-\infty}^{t}f(s)e^{-\lambda s}ds.$$

Theorem

If a μ -almost periodic function f satisfies the condition

$$\begin{aligned} \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall u \in \mathbb{R} \quad \forall A \subseteq [u, u + 1] \\ \mu(A) \leqslant \delta \Longrightarrow \int_{A} |f(s)| \mathrm{d} s \leqslant \varepsilon, \end{aligned}$$

then the convolution $f * g_{\lambda}$ exists for every $t \in \mathbb{R}$ and it is an almost periodic function in the sense of Bohr.

Theorem

Let f be a nonnegative $\mu\text{-almost}$ periodic function. If the convolution $f\ast g_\lambda$ exists and

$$\sup_{u\in\mathbb{R}}\int_{u}^{u+1}f(s)\mathrm{d}s=+\infty,$$

then it is not a $\mu\text{-almost}$ periodic function.

Theorem

For every $\lambda < 0$ it holds $\lim_{t \to +\infty} \frac{e^{\lambda t}}{2 + \cos(t) + \cos(\sqrt{2}t)} = 0.$

Theorem

Theorem

For every function $f : \mathbb{R} \to (0, +\infty)$, every $a \in \mathbb{R}$ and every $\varepsilon > 0$ there exist $\alpha \in \mathbb{R}$ such that

$$|\mathbf{a} - \alpha| < \varepsilon$$
 and $\limsup_{t \to +\infty} \frac{f(t)}{2 + \cos(t) + \cos(\alpha t)} = +\infty.$

Theorem

The set $\bigcup_{\lambda < 0} S_{\lambda}$, where

$$\mathcal{S}_{\lambda} = \{ lpha \in \mathbb{R} \setminus \mathbb{Q} \colon rac{1}{2 + \cos(\cdot) + \cos(lpha \cdot)} * g_{\lambda} \quad ext{exists} \},$$

is of the first Baire category. Moreover, $\bigcap_{\lambda < 0} S_{\lambda}$ and S_{λ_0} , for $\lambda_0 < 0$, are of the first Baire category. Thereby $\bigcap_{\lambda < 0} S'_{\lambda}$, S'_{λ_0} , for $\lambda_0 < 0$, and $\bigcup_{\lambda < 0} S'_{\lambda}$, where $S'_{\lambda} = \mathbb{R} \setminus S_{\lambda}$, are of the second Baire category.

Theorem

For every $a \in \mathbb{R}$ and every $\epsilon > 0$ there exists $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that for all $\lambda < 0$

$$|\boldsymbol{a} - \boldsymbol{\alpha}| < \epsilon$$
 and $\int_{-\infty}^{0} \frac{e^{-\lambda t}}{2 + \cos t + \cos \left(\boldsymbol{\alpha} t \right)} dt = +\infty.$

In other words, the set

 $\bigcap_{\lambda < 0} S'_{\lambda} = \big\{ \alpha \in \mathbb{R} \backslash \mathbb{Q} \colon \frac{1}{2 + \cos \cdot + \cos \left(\alpha \cdot \right)} * g_{\lambda} \quad \text{does not exist for all } \lambda < 0 \big\}$

is dense in \mathbb{R} . Thereby for $\lambda_0 < 0$ the sets S'_{λ_0} and $\bigcup_{\lambda < 0} S'_{\lambda}$ are also dense in \mathbb{R} .

Theorem

 $\bigcap_{\lambda < 0} S_{\lambda}$ is a set with the cardinality of the continuum. Moreover, the set $\bigcap_{\lambda < 0} S'_{\lambda}$ is also with the cardinality of the continuum. Thereby $\bigcup_{\lambda < 0} S_{\lambda}$ and $\bigcup_{\lambda < 0} S'_{\lambda}$ are also with the cardinality of the continuum.

Applications

Let us consider the first order linear differential equation of the form

$$x'(t) = \lambda x(t) + f(t), \qquad t \in \mathbb{R},$$

where $\lambda < 0$ and $f : \mathbb{R} \to \mathbb{R}$ is a continuous μ -almost periodic function.

Applications

Let us consider the first order linear differential equation of the form

$$x'(t) = \lambda x(t) + f(t), \qquad t \in \mathbb{R},$$

where $\lambda < 0$ and $f : \mathbb{R} \to \mathbb{R}$ is a continuous μ -almost periodic function.

By (C) we denote the following function

$$x(t)=\int_{-\infty}^t e^{\lambda(t-s)}f(s)\mathsf{d} s,\qquad t\in\mathbb{R}.$$

Applications

Let us consider the first order linear differential equation of the form

$$x'(t) = \lambda x(t) + f(t), \qquad t \in \mathbb{R},$$

where $\lambda < 0$ and $f : \mathbb{R} \to \mathbb{R}$ is a continuous μ -almost periodic function.

Theorem

Under the above asumptions one of the following claims holds:

- the function (C) is μ -almost periodic solution to the above equation;
- the function (C) is a solution to the above equation, however it is not μ-almost periodic;
- the function (C) is not a solution to the above equation.

References

- M. Borkowski, D. Bugajewska, K. Kasprzak, *Selected topics in nonlinear analysis*, Juliusz Schauder Center for Nonlinear Studies, Toruń, Lecture Notes in Nonlinear Analysis, **19**, 2021.
- D. Bugajewski, K. Kasprzak, A. Nawrocki, Asymptotic properties and convolutions of some almost periodic functions with applications, Ann. Mat. Pur. Appl., 202 (2023), 1033–1050.
- D. Bugajewski, A. Nawrocki, Some remarks on almost periodic functions in view of the Lebesgue measure with applications to linear differential equations, Ann. Acad. Sci. Fenn. Math., 42 (2017), 809–836.
- D. Bugajewski, A. Nawrocki, On autonomous superposition operators in spaces of µ-almost periodic functions and applications to linear differential equations, submitted.
- S. Stoiński, *Almost periodic functions in the Lebesgue measure*, Comment. Math. Prace Mat. **34** (1994), 189–198.

Thank you for

attention