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Abstract
In this talk we give a new notion of dimension, called dimension Dind,
in the area of finite lattices. We present:

many properties of Dind and
relations between Dind and known dimensions of finite lattices; the
covering dimension and the Krull dimension.
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Preliminaries

We begin this talk with some useful preliminary notes.

Partially Ordered Sets
A binary relation R ⊆ L × L on a non-empty set L is called partial order
relation if it satisfies the following:

(a,a) ∈ R, for any a ∈ L.
If (a,b) ∈ R and (b,a) ∈ R, then a = b, for any a,b ∈ L.
If (a,b) ∈ R and (b,c) ∈ R, then (a,c) ∈ R, for any a,b,c ∈ L.

The pair (L,R) is called partially ordered set or poset. In what fol-
lows we use the symbol aRb instead of (a,b) ∈ R and also we use the
notation ⩽ instead of R.
Sometimes we refer to a poset L without stating the symbol ⩽.
Finally, for a poset (L,⩽) we write a < b if a ⩽ b and a ≠ b.
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Preliminaries

Supremum and Infimum
Let (L,⩽) be a poset and A ⊆ L.

An element x ∈ L is called upper bound of A if a ⩽ x for every a ∈ A.
The least upper bound of A, if this exists, is called supremum of A
and is denoted by sup(A) or ⋁A. Especially, if x ,y ∈ A, we write
x ∨ y instead of sup{x ,y}.
An element x ∈ L is called lower bound of A if x ⩽ a for every a ∈ A.
The greatest lower bound of A, if this exists, is called infimum of
A and is denoted by inf(A) or ⋀A. Especially, if x ,y ∈ A, we write
x ∧ y instead of inf{x ,y}.
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Preliminaries

Isomorphism between posets
Let (L,⩽L) and (M,⩽M) be two posets. An 1-1 function f ∶ L → M is
called isomorphism if for every x1,x2 ∈ L, we have:

x1 ⩽L x2 ⇐⇒ f (x1) ⩽M f (x2).
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Preliminaries

Lattices-Finite Lattices
A poset (L,⩽) is called lattice if every finite subset of L has supre-
mum and infimum in L.
A poset (L,⩽) is called finite lattice if the set L is finite.

Clearly, every finite lattice has the minimum and the maximum element.
In our talk, we denote by 0L and 1L the bottom and the top element of
L, respectively.
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Preliminaries

Hasse Diagrams
Usually, a finite poset or a finite lattice (L,⩽) is represented through
diagrams where for any two elements x ,y ∈ L such that x < y we draw
the following arrow:

x

y
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Preliminaries

Examples of lattices with Hasse diagrams

x

y z

w

x

y z

u v

w
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Preliminaries

Examples of non-lattices with Hasse diagrams

x y

z

w

x

y

z w
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Preliminaries

Notations
Let (L,⩽) be a finite lattice.

For any element x of L, we denote by
↑x = {y ∈ L ∶ x ⩽ y}
↓x = {y ∈ L ∶ y ⩽ x} and
↓∗x = (↓x) ∖ {0L}.

For any element x of L, we denote by

x∗ = max{y ∈ L ∶ y ∧ x = 0L},

called the pseudocomplement of x .
We mention that for any element x ∈ L, the set ↑(x∗ ∨ x) is a lattice.
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Preliminaries

Covers of lattices
Let (L,⩽) be a finite lattice.

A subset V of L is called a cover of L if 0L ∉ V and ⋁V = 1L.
A subset U of a lattice L is called a refinement of a cover V of L,
writing U ≻ V , if for each u ∈ U, there exists v ∈ V such that u ⩽ v .
A cover U of a lattice L is called a minimal if U ⊆ V for every cover
V of L which is a refinement of U.
A subset A of L is said to be a set of pairwise disjoint elements
if 0L ∉ A and for every x ,y ∈ A, with x ≠ y , we have x ∧ y = 0L.
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The dimension Dind for finite lattices

Now, we insert the notion of dimension Dind in the class of finite lattices
and present basic properties of this dimension.

Dimension Dind
Let (L,⩽) be a finite lattice. The dimension Dind of L is defined as
follows:

Dind(L) = −1 if and only if L = {0L}.
Dind(L) ⩽ k , where k ∈ {0,1,2, . . .}, if for every finite cover V of
L, there exists a finite subset U of L, which is a set of pairwise
disjoint elements, U ≻ V and Dind(↑(u∗ ∨ u)) ⩽ k − 1, for every
u ∈ L ∖ ↓∗(⋁U).
Dind(L) = k , where k ∈ {0,1,2, . . .}, if Dind(L) ⩽ k and Dind(L) ≰
k − 1.

12 / 45



The dimension Dind for finite lattices

Examples
We consider the finite lattices (L1,⩽1) and (L2,⩽2) represented by the
following diagrams:

0L1

x1 x2

1L1

0L2

y1

y2 y3

1L2

For the above lattices we have Dind(L1) = 0 and Dind(L2) = 1.
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The dimension Dind for finite lattices

However, in our study, we prove that we can always construct a finite
lattice L with dimension Dind being any natural number k .

Theorem
For any k ∈ {1,2, . . .}, there exists a finite lattice L with Dind(L) = k .
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The dimension Dind for finite lattices

We continue the study of Dind presenting more results.

Proposition 1
Isomorphic lattices have the same dimension Dind.

Proposition 2
Let (L,⩽) be a finite lattice and k ∈ N. Then, Dind(L) ⩽ k if and only if
for every minimal cover V of L, there exists a subset U of L, which is a
set of pairwise disjoint elements, U ≻ V and Dind(↑(u ∨ u∗)) ⩽ k − 1, for
every u ∈ L ∖ ↓∗(⋁U).
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The dimension Dind for finite lattices

Proposition 3
Let (L,⩽) be a finite lattice and L′ = L ∪ {1L′} be the finite lattice of the
following diagram. Then Dind(L′) = 0.

1L′

0L

1L

Lattice L
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Sum and product properties for Dind

Now, we present properties of the dimension Dind of different finite lat-
tices. Especially, we present the dimension Dind of the sum and prod-
ucts of finite lattices.

Linear sum of lattices
The linear sum (L1 ⊕ L2,⩽) of two lattices (L1,⩽1) and (L2,⩽2), where
L1 ∩ L2 = ∅, is the lattice (L1 ∪ L2,⩽), where the relation ⩽ is defined as
follows:

x ⩽ y ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ,y ∈ L1 and x ⩽1 y
x ,y ∈ L2 and x ⩽2 y
x ∈ L1, y ∈ L2.

17 / 45



Sum and product properties for Dind

Proposition 4
In general, the relation

Dind(L1 ⊕ L2) ⩽ Dind(L1) +Dind(L2)

does not hold.
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Sum and product properties for Dind

Example
We consider the following lattices (L1,⩽1) and (L2,⩽2):

0L1

1L1

0L2

y1

y2 y3

y4 y5

1L2
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Sum and product properties for Dind

The linear sum L1 ⊕ L2 is given in the following diagram:

0L1

1L1

0L2

y1

y2 y3

y4 y5

1L2
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Sum and product properties for Dind

We observe that Dind(L1) = Dind(L2) = 0 and Dind(L1 ⊕ L2) = 1. Thus,

Dind(L1 ⊕ L2) ≰ Dind(L1) +Dind(L2).
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Sum and product properties for Dind

Cartesian product of lattices
The Cartesian product of two lattices (L1,⩽1) and (L2,⩽2) is the lattice
(L1 × L2,⩽), where

L1 × L2 = {(x ,y) ∶ x ∈ L1 and y ∈ L2}

and the relation ⩽ is defined as follows:

(x1,y1) ⩽ (x2,y2) ⇔ x1 ⩽1 x2 and y1 ⩽2 y2.
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Sum and product properties for Dind

Proposition 5
For any two finite lattices (L1,⩽1) and (L2,⩽2) the following relations
hold:

1 Dind(L1) ⩽ Dind(L1 × L2) and
2 Dind(L2) ⩽ Dind(L1 × L2).
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Sum and product properties for Dind

Lexicographic product of lattices
For two lattices (L1,⩽1) and (L2,⩽2) the lexicographic product L1 ◇L2
is the lattice (L1 × L2,⩽), where the relation ⩽ is defined as follows:

(x1,y1) ⩽ (x2,y2) ⇔
⎧⎪⎪⎨⎪⎪⎩

x1 <1 x2 or
x1 = x2 and y1 ⩽2 y2.
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Sum and product properties for Dind

Proposition 6
In general, the relation

Dind(L1 ◇ L2) ⩽ Dind(L1) +Dind(L2)

does not hold.
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Sum and product properties for Dind

Example
We consider the following lattices (L1,⩽1) and (L2,⩽2):

0L1

1L1

0L2

y1 y2

1L2
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Sum and product properties for Dind

The lexicographic product L1 ◇ L2 is given in the following diagram:

(0L1 ,0L2)

(0L1 ,y1) (0L1 ,y2)

(0L1 ,1L2)

(1L1 ,0L2)

(1L1 ,y1) (1L1 ,y2)

(1L1 ,1L2)
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Sum and product properties for Dind

We observe that Dind(L1) = Dind(L2) = 0 and Dind(L1 ◇ L2) = 1. Thus,

Dind(L1 ◇ L2) ≰ Dind(L1) +Dind(L2).
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Sum and product properties for Dind

Proposition 7
In general the relations:

1 Dind(L1 ◇ L2) ⩽ Dind(L1 × L2)
2 Dind(L1 × L2) ⩽ Dind(L1 ◇ L2)

do not hold, that is we can not compare the dimension Dind of the
Cartesian product with the dimension Dind of the lexicographic product.
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Sum and product properties for Dind

Rectangular product of lattices
The rectangular product of two finite lattices (L1,⩽1) and (L2,⩽2) is
the lattice (L1 ◻ L2,⩽), where

L1 ◻ L2 = {(x ,y) ∈ L1 × L2 ∶ x ≠ 0L1 and y ≠ 0L2} ∪ {(0L1 ,0L2)}

and the relation ⩽ is defined as follows:

(x1,y1) ⩽ (x2,y2) ⇔ x1 ⩽1 x2 and y1 ⩽2 y2.
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Sum and product properties for Dind

Proposition 8
In general the relations:

1 Dind(L1 ◻ L2) ⩽ Dind(L1 × L2)
2 Dind(L1 × L2) ⩽ Dind(L1 ◻ L2)

do not hold, that is we can not compare the dimension Dind of the
Cartesian product with the dimension Dind of the rectangular product.

31 / 45



Sum and product properties for Dind

Proposition 9
In general the relations:

1 Dind(L1 ◇ L2) ⩽ Dind(L1 ◻ L2)
2 Dind(L1 ◻ L2) ⩽ Dind(L1 ◇ L2)

do not hold, that is we can not compare the dimension Dind of the lexi-
cographic product with the dimension Dind of the rectangular product.
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Relations between Dind and other dimensions

Now, we present some additional remarks for the dimension Dind for
the class of finite lattices, comparing it with the covering dimension and
the Krull dimension.

The meaning of order
Let (L,⩽) be a finite lattice. The order of a subset C of L, denoted
by ord(C), is defined to be k , where k ∈ {0,1,2, . . .}, if and only if the
infimum of any k + 2 distinct elements of C is 0L and there exist k + 1
distinct elements of C whose infimum is not 0L.
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Relations between Dind and other dimensions

Covering dimension
Let (L,⩽) be a finite lattice. The covering dimension of L is defined as
follows:

1 dim(L) ⩽ k , where k ∈ {0,1,2, . . .}, if and only if for every cover C
of L, there exists a cover R of L, refinement of C with ord(R) ⩽ k .

2 dim(L) = k , where k ∈ {0,1,2, . . .}, if dim(L) ⩽ k and dim(L) ≰ k −1.
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Relations between Dind and other dimensions

Proposition 10
In general, we can not compare the dimensions Dind and dim for finite
lattices. That is, the relations:

1 Dind(L) ⩽ dim(L)
2 dim(L) ⩽ Dind(L)

do not hold.
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Relations between Dind and other dimensions

Prime filters
A non-empty subset F of a lattice (L,⩽) is called filter if F has the
following properties:

1 F ≠ L.
2 If x ∈ F and x ⩽ y , then y ∈ F .
3 If x ,y ∈ F , then x ∧ y ∈ F .

A filter F is called prime if for every x ,y ∈ L with x ∨y ∈ F , we have x ∈ F
or y ∈ F . The set of all prime filters of a lattice L is usually denoted by
PF(L).
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Relations between Dind and other dimensions

Krull dimension
If PF(L) ≠ ∅, then the Krull dimension of (L,⩽) is defined as follows:

Kdim(L) = sup{k ∶ there exist prime filters F0 ⊂ F1 ⊂ ⋯ ⊂ Fk}.
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Relations between Dind and other dimensions

Proposition 11
In general, we can not compare the dimensions Dind and Kdim for finite
lattices. That is, the relations:

1 Dind(L) ⩽ Kdim(L)
2 Kdim(L) ⩽ Dind(L)

do not hold.
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Thank You!!!

45 / 45


	Preliminaries
	The dimension Dind for finite lattices
	Sum and product properties for Dind
	Relations between Dind and other dimensions
	References

