A small Boolean algebra that is Grothendieck but not Nikodym

Damian Głodkowski joint work with Agnieszka Widz

> Institute of Mathematics Polish Academy of Sciences

SUMTOPO 2024

Definition

A Banach space X has the **Grothendieck property**, if every weak*-convergent sequence in X^* is weakly convergent.

★ ∃ ► ★

Definition

A Banach space X has the **Grothendieck property**, if every weak*-convergent sequence in X^* is weakly convergent.

Grothendieck: if \mathbb{B} is a complete Boolean algebra and $St(\mathbb{B})$ is its Stone space, then $C(St(\mathbb{B}))$ has the Grothendieck property. In particular, $\ell_{\infty} \equiv C(St(\mathcal{P}(\mathbb{N})))$ has the Grothendieck property.

Definition

A Banach space X has the **Grothendieck property**, if every weak*-convergent sequence in X^* is weakly convergent.

Grothendieck: if \mathbb{B} is a complete Boolean algebra and $St(\mathbb{B})$ is its Stone space, then $C(St(\mathbb{B}))$ has the Grothendieck property. In particular, $\ell_{\infty} \equiv C(St(\mathcal{P}(\mathbb{N})))$ has the Grothendieck property.

Definition

A Boolean algebra $\mathbb B$ has the **Grothendieck property**, if $C(\mathrm{St}(\mathbb B))$ has the Grothendieck property.

くロト く伺下 くヨト くヨト

A measure on $\mathbb{B}=\mathsf{a}$ finitely additive real-valued bounded function on \mathbb{B}

A measure on $\mathbb{B}=\mathsf{a}$ finitely additive real-valued bounded function on \mathbb{B}

Folklore

- $\bullet\,$ Every measure on $\mathbb B$ uniquely extends to a Radon measure on $\operatorname{St}(\mathbb B)$
- $\bullet\,$ The restriction of a Radon measure on ${\rm St}(\mathbb{B})$ to the clopen sets is a measure on $\mathbb{B}\,$

We will say that a sequence $(\nu)_{n\in\mathbb{N}}$ of measures on \mathbb{B} is **pointwise convergent** if there exists a measure ν on \mathbb{B} such that for all $A \in \mathbb{B}$ we have $\nu_n(A) \to \nu(A)$.

Definition

We say that a Boolean algebra \mathbb{B} has the **Nikodym property**, if every pointwise convergent sequence $(\nu_n)_{n\in\mathbb{N}}$ of measures on \mathbb{B} is bounded in norm (i.e. $\sup_{n\in\mathbb{N}} \|\nu_n\| < \infty$).

- σ -complete algebras have both the Nikodym and Grothendieck properties
- countable algebras have none of these properties

< □ > < □ > < □ > < □ > < □ > < □ >

- σ -complete algebras have both the Nikodym and Grothendieck properties
- countable algebras have none of these properties
- Schachermayer (1982): the Boolean algebra consisting of Jordan measurable subsets of [0,1] has the Nikodym property, but not the Grothendieck property

- σ -complete algebras have both the Nikodym and Grothendieck properties
- countable algebras have none of these properties
- Schachermayer (1982): the Boolean algebra consisting of Jordan measurable subsets of [0,1] has the Nikodym property, but not the Grothendieck property
- Talagrand (1984): Assuming CH there is a Boolean algebra with the Grothendieck property and without the Nikodym property

- σ -complete algebras have both the Nikodym and Grothendieck properties
- countable algebras have none of these properties
- Schachermayer (1982): the Boolean algebra consisting of Jordan measurable subsets of [0,1] has the Nikodym property, but not the Grothendieck property
- Talagrand (1984): Assuming CH there is a Boolean algebra with the Grothendieck property and without the Nikodym property

Open question: Is there a Boolean algebra with the Grothendieck property and without the Nikodym property in ZFC?

イロト 不得 ト イヨト イヨト

Theorem (G. & Widz)

There is a $\sigma\text{-centered}$ (and so ccc) notion of forcing $\mathbb P$ such that

 $\mathbb{P} \Vdash$ there exists a Boolean algebra of cardinality ω_1 with the Grothendieck property and without the Nikodym property

In particular, the existence of such an algebra is consistent with $\neg CH.$

Theorem (G. & Widz)

There is a $\sigma\text{-centered}$ (and so ccc) notion of forcing $\mathbb P$ such that

 $\mathbb{P} \Vdash$ there exists a Boolean algebra of cardinality ω_1 with the Grothendieck property and without the Nikodym property

In particular, the existence of such an algebra is consistent with \neg CH.

This algebra consists of Borel subsets of the Cantor set.

We say that a sequence $(\nu)_{n\in\mathbb{N}}$ of measures on a Boolean algebra $\mathbb B$ is normal if

- $\forall n \in \mathbb{N} \|\nu_n\| = 1$,
- the Radon measures $\widetilde{\nu}_n$ on $St(\mathbb{B})$ extending ν_n are concentrated on pairwise disjoint Borel sets.

(日) (同) (三) (三)

We say that a sequence $(\nu)_{n\in\mathbb{N}}$ of measures on a Boolean algebra $\mathbb B$ is normal if

- $\forall n \in \mathbb{N} \|\nu_n\| = 1$,
- the Radon measures $\tilde{\nu}_n$ on $St(\mathbb{B})$ extending ν_n are concentrated on pairwise disjoint Borel sets.

Fact

If \mathbb{B} does not have the Grothendieck property, then there is a normal sequence of measures $(\nu_n)_{n\in\mathbb{N}}$ on \mathbb{B} such that $(\tilde{\nu}_n)_{n\in\mathbb{N}}$ converges in the weak*-topology, but not weakly.

We say that a Boolean algebra \mathbb{B} satisfies property (\mathcal{G}) , if for every normal sequence $(\nu_n)_{n\in\mathbb{N}}$ of measures on \mathbb{B} there is $G\in\mathbb{B}$ and pairwise disjoint sets $(H_n)_{n\in\mathbb{N}}\subseteq\mathbb{B}$ such that

- For infinitely many $n \in \mathbb{N}$
 - $|\nu_n(G \cap H_n)| \ge 0.3$ and
 - $|\nu_n|(H_n) \ge 0.9.$
- For infinitely many $n \in \mathbb{N}$
 - $G \cap H_n = \emptyset$ and
 - $|\nu_n|(H_n) \ge 0.9.$

We say that a Boolean algebra \mathbb{B} satisfies property (\mathcal{G}) , if for every normal sequence $(\nu_n)_{n\in\mathbb{N}}$ of measures on \mathbb{B} there is $G\in\mathbb{B}$ and pairwise disjoint sets $(H_n)_{n\in\mathbb{N}}\subseteq\mathbb{B}$ such that

- For infinitely many $n \in \mathbb{N}$
 - $|\nu_n(G \cap H_n)| \ge 0.3$ and
 - $|\nu_n|(H_n) \ge 0.9.$
- For infinitely many $n \in \mathbb{N}$
 - $G \cap H_n = \emptyset$ and
 - $|\nu_n|(H_n) \ge 0.9.$

Proposition

If ${\mathbb B}$ satisfies (${\mathcal G}),$ then it has the Grothendieck property.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Notation:

- the Cantor set: $C = \{-1, 1\}^{\omega}$
- $\langle s \rangle = \{ x \in \mathcal{C} : x \upharpoonright m = s \}$ for $s \in \{-1, 1\}^m$
- λ is the measure on ${\rm Bor}({\it C})$ such that $\lambda(\langle s\rangle)=1/2^m$ for $s\in\{-1,1\}^m$

(日) (同) (三) (三)

Let $m \in \mathbb{N}$ and $\varepsilon > 0$. We say that $A \in Bor(C)$ is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$ we have

$$\lambda(A \cap \langle \mathbf{s} \rangle) < \frac{\varepsilon}{2^m m} \text{ or } \lambda(\langle \mathbf{s} \rangle \backslash A) < \frac{\varepsilon}{2^m m},$$

э

Let $m \in \mathbb{N}$ and $\varepsilon > 0$. We say that $A \in Bor(C)$ is (m, ε) -balanced, if for every $s \in \{-1, 1\}^m$ we have

$$\lambda(A \cap \langle s \rangle) < \frac{\varepsilon}{2^m m} \text{ or } \lambda(\langle s \rangle \backslash A) < \frac{\varepsilon}{2^m m},$$

and for every $s \in \{-1,1\}^m$ and r > m

$$\left|\int_{A\cap\langle s\rangle}\delta_rd\lambda\right|<\frac{\varepsilon}{2^m r},$$

where

$$\delta_r(x) = x(r)$$

э

< ロト < 同ト < ヨト < ヨト

The union of red and blue triangles is $(2^n, 2^{n+2}/2^{2^n})$ -balanced for $n \in \mathbb{N}$

A Boolean algebra $\mathbb{B} \subseteq Bor(\mathcal{C})$ is **balanced** if for every finite family $\mathcal{A} \subseteq \mathbb{B}$ and $\varepsilon > 0$ there is $m \in \mathbb{N}$ such that every $A \in \mathcal{A}$ is (m, ε) -balanced.

< ロト < 同ト < ヨト < ヨト

A Boolean algebra $\mathbb{B} \subseteq Bor(C)$ is **balanced** if for every finite family $\mathcal{A} \subseteq \mathbb{B}$ and $\varepsilon > 0$ there is $m \in \mathbb{N}$ such that every $A \in \mathcal{A}$ is (m, ε) -balanced.

Fact

If $\mathbb{B} \subseteq \operatorname{Bor}(\mathcal{C})$ is balanced, then it does not have the Nikodym property.

Proof: the sequence

$$\varphi_n(A) = n \int_A \delta_n d\lambda$$

is pointwise convergent to 0 on $\mathbb B$ but is not bounded in norm.

- 4 目 ト - 4 日 ト

Theorem (Talagrand)

Assume CH. Then there exists a balanced Boolean algebra with the Grothendieck property.

Theorem (Talagrand)

Assume CH. Then there exists a balanced Boolean algebra with the Grothendieck property.

Theorem (G. & Widz)

- \bullet Assume CH. Then there is a balanced Boolean algebra satisfying $(\mathcal{G}).$
- It is consistent with any possible size of \mathfrak{c} that there exists a balanced algebra of size ω_1 satisfying (\mathcal{G}).

Sketch of the construction under CH

We construct a balanced algebra $\mathbb{B}\subseteq \mathrm{Bor}(\mathcal{C})$ with the property (\mathcal{G}) as a union

$$\mathbb{B} = \bigcup_{\alpha < \omega_1} \mathbb{B}_{\alpha},$$

where \mathbb{B}_{α} are constructed by induction.

Sketch of the construction under CH

We construct a balanced algebra $\mathbb{B}\subseteq \mathrm{Bor}(\mathcal{C})$ with the property (\mathcal{G}) as a union

$$\mathbb{B} = \bigcup_{\alpha < \omega_1} \mathbb{B}_{\alpha},$$

where \mathbb{B}_{α} are constructed by induction.

• We start with $\mathbb{B}_0 = \operatorname{Clop}(\mathcal{C})$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of the construction under CH

We construct a balanced algebra $\mathbb{B}\subseteq \mathrm{Bor}(\mathcal{C})$ with the property (\mathcal{G}) as a union

$$\mathbb{B} = \bigcup_{\alpha < \omega_1} \mathbb{B}_{\alpha},$$

where \mathbb{B}_{α} are constructed by induction.

- We start with $\mathbb{B}_0 = \operatorname{Clop}(\mathcal{C})$
- If β is a limit ordinal, then

$$\mathbb{B}_{\beta} = \bigcup_{\alpha < \beta} \mathbb{B}_{\alpha}$$

• While constructing $\mathbb{B}_{\alpha+1}$ we are given some normal sequence $(\nu_n)_{n\in\mathbb{N}}$ of measures on \mathbb{B}_{α} and we add a new set that is a witness for the property (\mathcal{G}) (keeping everything balanced).

We find $n_1, n_2 \in \mathbb{N}$, disjoint sets $H_1, H_2 \in \mathbb{B}_{\alpha}$ and $G_1 \subseteq H_1$ such that

- $|\nu_{n_1}|(H_1), |\nu_{n_2}|(H_2) > 0.9$,
- $|\nu_{n_1}(G_1)| > 0.3$,
- other technical conditions that will allow us to continue the construction

Then we find a "very small" set $M_1 \in \mathbb{B}_{lpha}$ such that

- $M_1 \cap (H_1 \cup H_2) = \emptyset$
- $\langle \mathbb{A}_0 \cup \{ G_1 \cup M_1 \} \rangle$ is "sufficiently well balanced", where \mathbb{A}_0 is a finite subalgebra of \mathbb{B}_{α}

We find $n_3, n_4 \in \mathbb{N}$, disjoint sets $H_3, H_4 \in \mathbb{B}_{\alpha}$ and $G_3 \subseteq H_3$ such that

- $|\nu_{n_3}|(H_3), |\nu_{n_4}|(H_4) > 0.9$,
- $|\nu_{n_3}(G_1)| > 0.3$,
- other technical conditions that will allow us to continue the construction

Then we find a "very small" set $M_3 \in \mathbb{B}_{\alpha}$ such that

- $M_3 \cap (H_1 \cup H_2 \cup H_3 \cup H_4 \cup M_1) = \emptyset$
- $\langle \mathbb{A}_1 \cup \{ G_1 \cup M_1 \cup G_2 \cup M_2 \} \rangle$ is "sufficiently well balanced", where \mathbb{A}_1 is a finite subalgebra of \mathbb{B}_{α} that is bigger than \mathbb{A}_0

We finish taking

$$G = \bigcup_{i \in Odd} (G_i \cup M_i)$$

æ

э.

We finish taking

$$G = \bigcup_{i \in Odd} (G_i \cup M_i)$$

Then

- $\mathbb{B}_{\alpha+1} = \langle \mathbb{B}_{\alpha} \cup \{G\} \rangle$ is balanced
- *G* is a witness for the property (\mathcal{G}) for $(\nu_n)_{n\in\mathbb{N}}$

Forcing

For a countable Boolean algebra $\mathbb B$ we fix a representation as an increasing union of finite subalgebras:

$$\mathbb{B} = \bigcup_{n \in \mathbb{N}} = \mathbb{B}_n$$

We define a notion of forcing $\mathbb{P}.$ Conditions are of the form

$$\boldsymbol{p} = (k^{\boldsymbol{p}}, (m_n^{\boldsymbol{p}})_{n \leqslant k^{\boldsymbol{p}}}, (G_n^{\boldsymbol{p}})_{n \leqslant k^{\boldsymbol{p}}}, (H_n^{\boldsymbol{p}})_{n \leqslant k^{\boldsymbol{p}}}, \mathcal{M}^{\boldsymbol{p}}),$$

where

Forcing

For a countable Boolean algebra $\mathbb B$ we fix a representation as an increasing union of finite subalgebras:

$$\mathbb{B} = \bigcup_{n \in \mathbb{N}} = \mathbb{B}_n$$

We define a notion of forcing $\mathbb P.$ Conditions are of the form

$$p = (k^p, (m_n^p)_{n \leq k^p}, (G_n^p)_{n \leq k^p}, (H_n^p)_{n \leq k^p}, \mathcal{M}^p),$$

where $q \leq p$, if

- $k^q \ge k^p$,
- $m_n^q = m_n^p$ for $n \leqslant k^p$,
- $G_n^q = G_n^p$ for $n \leqslant k^p$,
- $H_n^q = H_n^p$ for $n \leqslant k^p$,
- $\mathcal{M}^q \supseteq \mathcal{M}^p$.

Let $\mathbb G$ be $\mathbb P$ -generic over V. In $V[\mathbb G]$ we define

$$G = \bigcup \{G_n^p : p \in \mathbb{G}, n \leqslant k^p\}$$

æ

Let $\mathbb G$ be $\mathbb P$ -generic over V. In $V[\mathbb G]$ we define

$$G = \bigcup \{G_n^p : p \in \mathbb{G}, n \leqslant k^p\}$$

Then

• the algebra $\langle \mathbb{B} \cup \{G\} \rangle$ is balanced,

< ロト < 同ト < ヨト < ヨト

Let $\mathbb G$ be $\mathbb P$ -generic over V. In $V[\mathbb G]$ we define

$$G = \bigcup \{G_n^p : p \in \mathbb{G}, n \leqslant k^p\}$$

Then

- the algebra $\langle \mathbb{B} \cup \{G\} \rangle$ is balanced,
- if (ν_n)_{n∈ℕ} is a normal sequence such that (|ν_n|)_{n∈ℕ} converges to a measure ν ∈ M^p for some p ∈ G, then G is a witness for the property (G) for this sequence.

To obtain a model with a balanced algebra with the property (G) we extend our algebras ω_1 times using finitely supported iteration of described forcings.

< ロト < 同ト < ヨト < ヨト

To obtain a model with a balanced algebra with the property (\mathcal{G}) we extend our algebras ω_1 times using finitely supported iteration of described forcings.

In this model we have

$$\mathfrak{p} = \mathfrak{s} = \mathfrak{cov}(\mathcal{M}) = \omega_1$$

- 4 目 ト - 4 日 ト

Thank you for your attention!

< □ > < 同 > < 回 > < 回 > < 回 >