Enriched Hausdorff and Vietoris functors

Dirk Hofmann¹

CIDMA, Department of Mathematics, University of Aveiro, Portugal dirk@ua.pt, http://sweet.ua.pt/dirk

38th Summer Conference on Topology and its Applications

Coimbra, July 8, 2024

¹based on joint work with Carla Reis, Renato Neves and Pedro Nora.

Definition. For a functor $\mathsf{F}\colon \mathbf{C}\longrightarrow \mathbf{C}$, one defines coalgebra

$$\begin{array}{ccc} \mathsf{F}X & \mathsf{F}Y \\ \alpha \\ \chi & & \uparrow \\ \chi & & Y \end{array}$$

Definition. For a functor $F: \mathbb{C} \longrightarrow \mathbb{C}$, one defines **coalgebra homomorphism**:

The corresponding category of coalgebras and homomorphisms is denoted as $\mathrm{CoAlg}(\mathsf{F}).$

Definition. For a functor $F: \mathbb{C} \longrightarrow \mathbb{C}$, one defines **coalgebra homomorphism**:

The corresponding category of coalgebras and homomorphisms is denoted as $\operatorname{CoAlg}(\mathsf{F}).$

Theorem. The forgetful functor $\operatorname{CoAlg}(F) \longrightarrow C$ creates all colimits and those limits which are preserved by F.

Theorem. The final coalgebra for $F: \mathbf{C} \longrightarrow \mathbf{C}$ is a fix-point of F.

LAMBEK, JOACHIM (1968). "A fixpoint theorem for complete categories". In: Mathematische Zeitschrift 103.(2), pp. 151–161. **Theorem.** The final coalgebra for $\mathsf{F}\colon \mathbf{C}\longrightarrow \mathbf{C}$ is a fix-point of $\mathsf{F}.$

LAMBEK, JOACHIM (1968). "A fixpoint theorem for complete categories". In: Mathematische Zeitschrift 103.(2), pp. 151–161.

Example. The power-set functor $\mathsf{P}\colon \mathbf{Set} \longrightarrow \mathbf{Set}$ does not admit a final coalgebra.

CANTOR, GEORG (1891). "Über eine elementare Frage der Mannigfaltigkeitslehre". In: Jahresbericht der Deutschen Mathematiker-Vereinigung 1, pp. 75–78.

Theorem. The final coalgebra for $\mathsf{F}\colon \mathbf{C}\longrightarrow \mathbf{C}$ is a fix-point of $\mathsf{F}.$

LAMBEK, JOACHIM (1968). "A fixpoint theorem for complete categories". In: Mathematische Zeitschrift 103.(2), pp. 151–161.

Example. The power-set functor $\mathsf{P}\colon \mathbf{Set} \longrightarrow \mathbf{Set}$ does not admit a final coalgebra.

CANTOR, GEORG (1891). "Über eine elementare Frage der Mannigfaltigkeitslehre". In: Jahresbericht der Deutschen Mathematiker-Vereinigung 1, pp. 75–78.

Example. The finite power-set functor P_{fin} : Set \longrightarrow Set admits a final coalgebra (for instance, because P_{fin} is finitary).

BARR, MICHAEL (1993). "Terminal coalgebras in well-founded set theory". In: Theoretical Computer Science 114.(2), pp. 299–315.

 $\ensuremath{\textbf{Question.}}$ What about "power functors" on other (topological) base categories?

For instance,

• the up-set functor Up: $\mathbf{Ord} \longrightarrow \mathbf{Ord}$?

For instance,

- the up-set functor Up: $\mathbf{Ord} \longrightarrow \mathbf{Ord}$?
- liftings of Set-functors to Met (or, more general, to V-Cat)?

For instance,

- the up-set functor Up: Ord → Ord?
- liftings of Set-functors to Met (or, more general, to V-Cat)?

• (in particular) the Hausdorff functor?

Here: $Ha(A, B) = \sup_{y \in B} \inf_{x \in A} a(x, y)$, for a metric space (X, a) and $A, B \subseteq X$.

For instance,

- the up-set functor Up: Ord → Ord?
- liftings of Set-functors to Met (or, more general, to V-Cat)?

• (in particular) the Hausdorff functor?

 $\mathsf{H}\colon \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}$

Here: $Ha(A, B) = \bigwedge_{y \in B} \bigvee_{x \in A} a(x, y)$, for a \mathcal{V} -category (X, a) and $A, B \subseteq X$.

Theorem. Consider the following commutative diagram of functors.

1. If \overline{F} has a fix-point, then so has F. Hence, if F does not have a fix-point, then neither does \overline{F} .

Theorem. Consider the following commutative diagram of functors.

- 1. If \overline{F} has a fix-point, then so has F. Hence, if F does not have a fix-point, then neither does \overline{F} .
- If U: X → A is topological, then so is U: CoAlg(F) → CoAlg(F).
 In particular, the category CoAlg(F) has limits of shape *I* if and only if CoAlg(F) has limits of shape *I*.

Theorem. Let X be a partially ordered set. Then there is no embedding $\varphi \colon Up(X) \longrightarrow X$.

DILWORTH, ROBERT P. and GLEASON, ANDREW M. (1962). "A generalized Cantor theorem". In: Proceedings of the American Mathematical Society 13.(5), pp. 704–705.

ROSEBRUGH, ROBERT and WOOD, RICHARD J. (1994). "The Cantor-Gleason-Dilworth Theorem". URL: https://mta.ca/~rrosebru/articles/cgd.pdf.

Theorem. Let X be a partially ordered set. Then there is no embedding $\varphi: Up(X) \longrightarrow X$.

DILWORTH, ROBERT P. and GLEASON, ANDREW M. (1962). "A generalized Cantor theorem". In: *Proceedings of the American Mathematical Society* 13.(5), pp. 704–705.

ROSEBRUGH, ROBERT and WOOD, RICHARD J. (1994). "The Cantor-Gleason-Dilworth Theorem". URL: https://mta.ca/~rrosebru/articles/cgd.pdf.

 ${\it Corollary.}$ The up-set functor Up: ${\rm Ord} \longrightarrow {\rm Ord}$ does not admit a final coalgebra.

Let $f: (X, a) \longrightarrow (Y, b)$ be a \mathcal{V} -functor.

Let $f: (X, a) \longrightarrow (Y, b)$ be a \mathcal{V} -functor.

1. For every $A \subseteq X$, put $\uparrow^a A = \{y \in X \mid k \leq \bigvee_{x \in A} a(x, y)\}.$

Let $f: (X, a) \longrightarrow (Y, b)$ be a \mathcal{V} -functor.

1. For every $A \subseteq X$, put $\uparrow^a A = \{y \in X \mid k \leq \bigvee_{x \in A} a(x, y)\}.$

2. We call a subset $A \subseteq X$ of (X, a) increasing whenever $A = \uparrow^a A$.

Let $f : (X, a) \longrightarrow (Y, b)$ be a \mathcal{V} -functor.

- 1. For every $A \subseteq X$, put $\uparrow^a A = \{y \in X \mid k \leq \bigvee_{x \in A} a(x, y)\}.$
- 2. We call a subset $A \subseteq X$ of (X, a) increasing whenever $A = \uparrow^a A$.
- 3. We consider the \mathcal{V} -category $HX = \{A \subseteq X \mid A \text{ is increasing}\}$, equipped with

$$\mathsf{H}\mathsf{a}(A,B) = \bigwedge_{y \in B} \bigvee_{x \in A} \mathsf{a}(x,y),$$

for all $A, B \in HX$.

Let $f : (X, a) \longrightarrow (Y, b)$ be a \mathcal{V} -functor.

- 1. For every $A \subseteq X$, put $\uparrow^a A = \{y \in X \mid k \leq \bigvee_{x \in A} a(x, y)\}.$
- 2. We call a subset $A \subseteq X$ of (X, a) increasing whenever $A = \uparrow^a A$.
- 3. We consider the \mathcal{V} -category $HX = \{A \subseteq X \mid A \text{ is increasing}\}$, equipped with

$$\mathsf{H}\mathsf{a}(A,B) = \bigwedge_{y \in B} \bigvee_{x \in A} \mathsf{a}(x,y),$$

for all $A, B \in HX$.

4. Hf: $H(X, a) \longrightarrow H(Y, b)$ sends an increasing subset $A \subseteq X$ to $\uparrow^{b} f(A)$.

We obtain the functor $H: \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}$.

AKHVLEDIANI, ANDREI, CLEMENTINO, MARIA MANUEL, and THOLEN, WALTER (2010). "On the categorical meaning of Hausdorff and Gromov distances, I". In: *Topology and its Applications* **157**.(8), pp. 1275–1295.

STUBBE, ISAR (2010). ""Hausdorff distance" via conical cocompletion". In: Cahiers de Topologie et Géométrie Différentielle Catégoriques **51**.(1), pp. 51–76.

Theorem. Let \mathcal{V} be a non-trivial quantale and (X, a) be a \mathcal{V} -category. There is no embedding of type $H(X, a) \longrightarrow (X, a)$.

Theorem. Let \mathcal{V} be a non-trivial quantale and (X, a) be a \mathcal{V} -category. There is no embedding of type $H(X, a) \longrightarrow (X, a)$.

Corollary. Let \mathcal{V} be a non-trivial quantale. The Hausdorff functor $H: \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}$ does not admit a terminal coalgebra, neither does any possible restriction to a full subcategory of $\mathcal{V}\text{-}\mathbf{Cat}$.

Theorem. Let \mathcal{V} be a non-trivial quantale and (X, a) be a \mathcal{V} -category. There is no embedding of type $H(X, a) \longrightarrow (X, a)$.

Corollary. Let \mathcal{V} be a non-trivial quantale. The Hausdorff functor $H: \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}$ does not admit a terminal coalgebra, neither does any possible restriction to a full subcategory of $\mathcal{V}\text{-}\mathbf{Cat}$.

"A cardinal principle of modern mathematical research may be stated as a maxim: One must always topologize."

STONE, MARSHALL HARVEY (1938). "The representation of Boolean algebras". In: Bulletin of the American Mathematical Society 44.(12), pp. 807–816. **Theorem.** If the C has and $F: C \longrightarrow C$ preserves the limit L of the diagram

```
1 \leftarrow \mathsf{F}1 \leftarrow \mathsf{FF}1 \leftarrow \ldots,
```

then the canonical isomorphism $L \longrightarrow FL$ is a terminal F-coalgebra.

Theorem. If the C has and $F: \mathbf{C} \longrightarrow \mathbf{C}$ preserves the limit L of the diagram

 $1 \leftarrow \mathsf{F}1 \leftarrow \mathsf{FF}1 \leftarrow \ldots,$

then the canonical isomorphism $L \longrightarrow FL$ is a terminal F-coalgebra.

Definition. $F \colon C \longrightarrow C$ is a covarietor if $\operatorname{CoAlg}(F) \longrightarrow C$ is left adjoint.

Theorem. If C is cocomplete with finite limits and C has and F: $C \longrightarrow C$ preserves limits of countable chains, then $F: C \longrightarrow C$ is a covarietor.

Proof. F is a covarietor iff $F(-) \times X$ has a terminal coalgebra, for all X.

Theorem. If the C has and $F: \mathbf{C} \longrightarrow \mathbf{C}$ preserves the limit L of the diagram

 $1 \leftarrow \mathsf{F}1 \leftarrow \mathsf{FF}1 \leftarrow \ldots,$

then the canonical isomorphism $L \longrightarrow FL$ is a terminal F-coalgebra.

Definition. $F \colon C \longrightarrow C$ is a covarietor if $\operatorname{CoAlg}(F) \longrightarrow C$ is left adjoint.

Theorem. If C is cocomplete with finite limits and C has and F: $C \longrightarrow C$ preserves limits of countable chains, then F: $C \longrightarrow C$ is a covarietor.

Proof. F is a covarietor iff $F(-) \times X$ has a terminal coalgebra, for all X.

Theorem. Let F be a covarietor over a complete category. If $\operatorname{CoAlg}(F)$ has equalisers then $\operatorname{CoAlg}(F)$ is complete.

LINTON, F. E. J. (1969). "Coequalizers in categories of algebras". In: Seminar on Triples and Categorical Homology Theory. Ed. by B. ECKMANN. Vol. 80. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 75–90.

Proof. Verify the Solution Set Condition for

$$\Delta \colon \operatorname{CoAlg}(\mathsf{F}) \longrightarrow \operatorname{CoAlg}(\mathsf{F})^{\prime}.$$

Proof. Verify the Solution Set Condition for

$$\Delta \colon \operatorname{CoAlg}(\mathsf{F}) \longrightarrow \operatorname{CoAlg}(\mathsf{F})'.$$

Example. If $F : \text{Set} \longrightarrow \text{Set}$ preserves monocones of a certain type, then the category $\operatorname{CoAlg}(F)$ has limits of the same type.

Example. If $F : \mathbf{Top} \longrightarrow \mathbf{Top}$ preserves either small monocones or small initial monocones of a certain type, then the category $\operatorname{CoAlg}(F)$ has limits of the same type.

Proof. Verify the Solution Set Condition for

$$\Delta \colon \operatorname{CoAlg}(\mathsf{F}) \longrightarrow \operatorname{CoAlg}(\mathsf{F})'.$$

Example. If $F : \text{Set} \longrightarrow \text{Set}$ preserves monocones of a certain type, then the category CoAlg(F) has limits of the same type.

Example. If $F: \mathbf{Top} \longrightarrow \mathbf{Top}$ preserves either small monocones or small initial monocones of a certain type, then the category $\operatorname{CoAlg}(F)$ has limits of the same type.

Corollary. Let $F: \mathbb{C} \longrightarrow \mathbb{C}$ be an endofunctor on a cocomplete category \mathbb{C} . If \mathbb{C} is regularly wellpowered, has an (Epi,RegMono)-factorisation structure and $F: \mathbb{C} \longrightarrow \mathbb{C}$ preserves regular monos, then $\operatorname{CoAlg}(F)$ has equalisers.

$$VX = \{K \subseteq X \mid K \text{ is closed } (= \text{ compact})\}$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$U^{\Diamond} = \{A \in VX \mid A \cap U \neq \emptyset\} \qquad ("A \text{ hits } U"),$$
$$U^{\Box} = \{A \in VX \mid A \cap U^{\complement} = \emptyset\} \qquad ("A \text{ misses } U^{\complement}")$$

We obtain V: CompHaus \longrightarrow CompHaus.

VIETORIS, LEOPOLD (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258–280.

$$VX = \{K \subseteq X \mid K \text{ is closed } (= \text{ compact})\}$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$U^{\Diamond} = \{A \in VX \mid A \cap U \neq \emptyset\}$$
 ("A hits U"),
$$U^{\Box} = \{A \in VX \mid A \cap U^{\complement} = \emptyset\}$$
 ("A misses U^{\complement} ")

We obtain V: CompHaus \longrightarrow CompHaus.

VIETORIS, LEOPOLD (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258–280.

Remark. This definition can be generalised to arbitrary topological spaces ... but does not always defines a functor!!

$$VX = \{K \subseteq X \mid K \text{ is closed } (= \text{ compact})\}$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$U^{\Diamond} = \{A \in VX \mid A \cap U \neq \emptyset\}$$
 ("A hits U"),
$$U^{\Box} = \{A \in VX \mid A \cap U^{\complement} = \emptyset\}$$
 ("A misses U^{\complement} ")

We obtain V: CompHaus \longrightarrow CompHaus.

VIETORIS, LEOPOLD (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258–280.

Remark. We consider here the following two variants on Top:

• lower Vietoris: closed subsets, but only "hit topology".

$$VX = \{K \subseteq X \mid K \text{ is closed } (= \text{ compact})\}$$

equipped with the "hit-and-miss topology" generated by the subbasis of sets of the form (where $U \subseteq X$ is open)

$$U^{\Diamond} = \{A \in VX \mid A \cap U \neq \emptyset\}$$
 ("A hits U"),
$$U^{\Box} = \{A \in VX \mid A \cap U^{\complement} = \emptyset\}$$
 ("A misses U^{\complement} ")

We obtain V: CompHaus \longrightarrow CompHaus.

VIETORIS, LEOPOLD (1922). "Bereiche zweiter Ordnung". In: Monatshefte für Mathematik und Physik 32.(1), pp. 258–280.

Remark. We consider here the following two variants on **Top**:

- lower Vietoris: closed subsets, but only "hit topology".
- compact Vietoris: compact subsets, "hit-and-miss topology".

• V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ does not preserve cofiltered limit.

- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ does not preserve cofiltered limit.
- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ preserve initial cofiltered cones.

- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ does not preserve cofiltered limit.
- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ preserve initial cofiltered cones.
- The lower Vietoris functor preserves initial cofiltered monocones. Therefore ${\rm CoAlg}(V)$ has cofiltered limits.

- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ does not preserve cofiltered limit.
- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ preserve initial cofiltered cones.
- The lower Vietoris functor preserves initial cofiltered monocones. Therefore $\mathrm{CoAlg}(\mathsf{V})$ has cofiltered limits.
- The compact Vietoris functor preserves initial cofiltered monocones of Hausdorff spaces. Therefore $\mathrm{CoAlg}(V)$ has cofiltered limits of Hausdorff spaces.

- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ does not preserve cofiltered limit.
- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ preserve initial cofiltered cones.
- The lower Vietoris functor preserves initial cofiltered monocones. Therefore $\mathrm{CoAlg}(\mathsf{V})$ has cofiltered limits.
- The compact Vietoris functor preserves initial cofiltered monocones of Hausdorff spaces. Therefore ${\rm CoAlg}(V)$ has cofiltered limits of Hausdorff spaces.
- V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ preserves regular monomorphisms.
- The category $\operatorname{CoAlg}(V)$ has equalisers.

Theorem. The compact Vietoris functor V: Haus \longrightarrow Haus preserves cofiltered limits and closed embeddings (= regular monos). Hence, $\operatorname{CoAlg}(V)$ is complete.

ZENOR, PHILLIP (1970). "On the completeness of the space of compact subsets". In: *Proceedings of the American Mathematical Society* **26**.(1), pp. 190–192.

HOFMANN, DIRK, NEVES, RENATO, and NORA, PEDRO (2019). "Limits in categories of Vietoris coalgebras". In: *Mathematical Structures in Computer Science* **29**.(4), pp. 552–587.

Theorem. The compact Vietoris functor V: Haus \longrightarrow Haus preserves cofiltered limits and closed embeddings (= regular monos). Hence, $\operatorname{CoAlg}(V)$ is complete.

ZENOR, PHILLIP (1970). "On the completeness of the space of compact subsets". In: *Proceedings of the American Mathematical Society* **26**.(1), pp. 190–192.

HOFMANN, DIRK, NEVES, RENATO, and NORA, PEDRO (2019). "Limits in categories of Vietoris coalgebras". In: *Mathematical Structures in Computer Science* 29.(4), pp. 552–587.

Theorem. The classic Vietoris functor V: CompHaus \rightarrow CompHaus preserves cofiltered limits and embeddings. Hence, CoAlg(V) is complete.

Theorem. Let $D: I \longrightarrow \text{CompHaus}$ be a cofiltered diagram. Then a cone $(p_i: L \longrightarrow D(i))_{i \in I}$ for D is a limit cone if and only if 1. $(p_i: L \longrightarrow D(i))_{i \in I}$ is mono and,

- 2. for every $i \in I$: $\bigcap_{i\to i} \operatorname{im} D(j\to i) = \operatorname{im} p_i.$

That is, "the image of each p_i is as large as possible".

BOURBAKI, NICOLAS (1942). Éléments de mathématique. 3. Pt. 1: Les structures fondamentales de l'analyse. Livre 3: Topologie générale. Paris: Hermann & Cie.

Remark. The lower Vietoris functor V: **Top** \rightarrow **Top** restricts to an endofunctor on the category **StablyComp** of stably compact spaces and spectral maps.

Remark. The lower Vietoris functor V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ restricts to an endofunctor on the category **StablyComp** of stably compact spaces and spectral maps.

Theorem. The lower Vietoris functors V: **StablyComp** \longrightarrow **StablyComp** preserve cofiltered limits and embeddings. Hence, CoAlg(V) is complete.

Remark. The lower Vietoris functor V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ restricts to an endofunctor on the category **StablyComp** of stably compact spaces and spectral maps.

Theorem. The lower Vietoris functors V: **StablyComp** \longrightarrow **StablyComp** preserve cofiltered limits and embeddings. Hence, CoAlg(V) is complete.

Now comes a little surprise (at least to us):

Corollary. The lower Vietoris functor V: $\mathbf{Top} \longrightarrow \mathbf{Top}$ admits a terminal coalgebra.

Proof. Use that $\mathbf{StablyComp} \longrightarrow \mathbf{Top}$ is closed under limits and

 $1 \longleftarrow \mathsf{V}1 \longleftarrow \mathsf{V}\mathsf{V}1 \longleftrightarrow \ldots$

lives in StablyComp.

We assume that $\mathcal V$ is a completely distributive quantale, then

$$\xi \colon \mathsf{U}\mathcal{V} \longrightarrow \mathcal{V}, \quad \mathfrak{v} \longmapsto \bigwedge_{A \in \mathfrak{v}} \bigvee A$$

is the structure of an $\mathbb U\text{-algebra}$ on $\mathcal V$ (the Lawson topology).

We assume that \mathcal{V} is a completely distributive quantale, then

$$\xi \colon \mathsf{U}\mathcal{V} \longrightarrow \mathcal{V}, \quad \mathfrak{v} \longmapsto \bigwedge_{A \in \mathfrak{v}} \bigvee A$$

is the structure of an $\mathbb U\text{-}\mathsf{algebra}$ on $\mathcal V$ (the Lawson topology).

 We obtain a lax extension of the ultrafilter monad U = (U, m, e) to V-Rel that induces a monad on V-Cat.

$$Ua(\mathfrak{x},\mathfrak{y}) = \bigwedge_{A,B \times,y} \bigvee_{A,B \times,y} a(x,y), \qquad (X,a) \longmapsto (UX,Ua).$$

We assume that $\ensuremath{\mathcal{V}}$ is a completely distributive quantale, then

$$\xi\colon \mathsf{U}\mathcal{V}\longrightarrow\mathcal{V},\quad \mathfrak{v}\longmapsto\bigwedge_{A\in\mathfrak{v}}\bigvee A$$

is the structure of an $\mathbb U\text{-}\mathsf{algebra}$ on $\mathcal V$ (the Lawson topology).

- We obtain a lax extension of the ultrafilter monad U = (U, m, e) to V-Rel that induces a monad on V-Cat.
- Its algebras are V-categories equipped with a compatible compact Hausdorff topology, called V-categorical compact Hausdorff spaces.
- We denote the corresponding Eilenberg-Moore category by V-CatCH.

Theorem. For a \mathcal{V} -category (X, a) and a \mathbb{U} -algebra (X, α) , the following are equivalent.

(i) $\alpha: U(X, a) \longrightarrow (X, a)$ is a \mathcal{V} -functor.

We assume that \mathcal{V} is a completely distributive guantale, then

$$\xi\colon \mathsf{U}\mathcal{V}\longrightarrow\mathcal{V},\quad \mathfrak{v}\longmapsto\bigwedge_{A\in\mathfrak{v}}\bigvee A$$

is the structure of an \mathbb{U} -algebra on \mathcal{V} (the Lawson topology).

- We obtain a lax extension of the ultrafilter monad $\mathbb{U} = (\mathbb{U}, m, e)$ to \mathcal{V} -Rel that induces a monad on \mathcal{V} -Cat.
- Its algebras are V-categories equipped with a compatible compact Hausdorff topology, called *V*-categorical compact Hausdorff spaces.
- We denote the corresponding Eilenberg–Moore category by V-CatCH.

Theorem. For an ordered set (X, \leq) and a U-algebra (X, α) , the following are equivalent.

(i) $\alpha : (UX, U \le) \longrightarrow (X, \le)$ is monotone. (ii) $G_{\le} \subseteq X \times X$ is closed; that is, $\chi_{\le} : X \times X \longrightarrow 2$ is continuous.

THOLEN, WALTER (2009). "Ordered topological structures". In: Topology and its Applications 156.(12), pp. 2148-2157.

We assume that $\ensuremath{\mathcal{V}}$ is a completely distributive quantale, then

$$\xi\colon \mathsf{U}\mathcal{V}\longrightarrow\mathcal{V},\quad \mathfrak{v}\longmapsto\bigwedge_{A\in\mathfrak{v}}\bigvee A$$

is the structure of an \mathbb{U} -algebra on \mathcal{V} (the Lawson topology).

- We obtain a lax extension of the ultrafilter monad U = (U, m, e) to V-Rel that induces a monad on V-Cat.
- Its algebras are V-categories equipped with a compatible compact Hausdorff topology, called V-categorical compact Hausdorff spaces.
- We denote the corresponding Eilenberg-Moore category by V-CatCH.

Theorem. For a \mathcal{V} -category (X, a) and a \mathbb{U} -algebra (X, α) , the following are equivalent.

(i)
$$\alpha: U(X, a) \longrightarrow (X, a)$$
 is a \mathcal{V} -functor.

(ii) $a: (X, \alpha) \times (X, \alpha) \longrightarrow (\mathcal{V}, \xi_{\leq})$ is continuous.

$$\mathsf{H}X = \{A \subseteq X \mid A \text{ is closed and increasing}\}\$$

with the restriction of the Hausdorff structure to HX and the hit-and-miss topology (Vietoris topology).

Remark. That is, the topology generated by the sets

$$V^{\Diamond} = \{A \in \mathsf{H}X \mid A \cap V
eq arnothing\}$$
 (V open, co-increasing)

and

$$W^{\perp} = \{A \in HX \mid A \subseteq W\}$$
 (*W* open, co-decreasing)

 $HX = \{A \subseteq X \mid A \text{ is closed and increasing}\}\$

with the restriction of the Hausdorff structure to HX and the hit-and-miss topology (Vietoris topology).

Theorem. For every V-categorical compact Hausdorff space X, HX is a V-categorical compact Hausdorff space.

Compare with: For a compact metric space, the Hausdorff metric induces the Vietoris topology.

 $\mathsf{H}X = \{A \subseteq X \mid A \text{ is closed and increasing}\}\$

with the restriction of the Hausdorff structure to HX and the hit-and-miss topology (Vietoris topology).

Theorem. For every \mathcal{V} -categorical compact Hausdorff space X, HX is a \mathcal{V} -categorical compact Hausdorff space. In fact, the construction above defines a functor $H: \mathcal{V}$ -CatCH $\longrightarrow \mathcal{V}$ -CatCH.

Compare with: For a compact metric space, the Hausdorff metric induces the Vietoris topology.

 $HX = \{A \subseteq X \mid A \text{ is closed and increasing}\}\$

with the restriction of the Hausdorff structure to HX and the hit-and-miss topology (Vietoris topology).

Theorem. For every \mathcal{V} -categorical compact Hausdorff space X, HX is a \mathcal{V} -categorical compact Hausdorff space. In fact, the construction above defines a functor $H: \mathcal{V}$ -CatCH $\longrightarrow \mathcal{V}$ -CatCH.

Compare with: For a compact metric space, the Hausdorff metric induces the Vietoris topology.

Theorem. The Hausdorff functor $H: \mathcal{V}\text{-}\mathbf{CatCH} \longrightarrow \mathcal{V}\text{-}\mathbf{CatCH}$ preserves cofiltered limits. Therefore the forgetful functor $\operatorname{CoAlg}(H) \longrightarrow \mathcal{V}\text{-}\mathbf{CatCH}$ is comonadic. Moreover, $\operatorname{CoAlg}(H)$ has equalisers and is therefore complete.

The metric case:

The metric case:

The metric case:

The general case:

The general case:

$$(X, a: UX \times X \longrightarrow \mathcal{V})$$

The metric case:

The general case:

Remark. U-distributor $\varphi \colon X \longrightarrow Y = \varphi \colon UX \times Y \longrightarrow \mathcal{V}$ so that ...

• $\varphi \colon 1 \longrightarrow X = \mathcal{U}$ -functor $\varphi \colon X \longrightarrow \mathcal{V}$.

•
$$\psi: X \longrightarrow 1 = \mathcal{U}$$
-functor $\psi: (UX)^{\mathrm{op}} \longrightarrow \mathcal{V}$.

Definition. *X* is **Cauchy complete** if every adjunction $\varphi \dashv \psi$ is induced by some $x \in X$.

Theorem. Under some conditions on \mathcal{V} .

1. Every \mathcal{U} -category in the image of

$$K: (\mathcal{V}\text{-}\mathbf{Cat})^{\mathbb{U}} \longrightarrow \mathcal{U}\text{-}\mathbf{Cat}$$

is Cauchy complete.

- 2. $(-)_0: \mathcal{U}$ -Cat sends Cauchy complete \mathcal{U} -categories to Cauchy complete \mathcal{V} -categories.
- For every (X, a₀, α) in (𝒱-Cat)^𝒱, the 𝒱-category (X, a₀) is Cauchy complete.

Under some conditions on \mathcal{V} .

Definition. A \mathcal{V} -distributor $\varphi_0 \colon 1 \longrightarrow X$ is called **codirected** whenever the \mathcal{V} -functor

$$[\varphi_0, -]: \mathcal{V}\text{-}\mathbf{Dist}(1, X) \longrightarrow \mathcal{V}$$

preserves finite suprema and tensors. A V-category X is called **codirected complete** whenever X has all "codirected" weighted limits.

Theorem. The inclusion \mathcal{V} -functor

 \mathcal{U} -Dist $(1, X) \longrightarrow \mathcal{V}$ -Dist $(1, X_0)$

has a left adjoint $\overline{(-)}$: \mathcal{V} -**Dist** $(1, X_0) \longrightarrow \mathcal{U}$ -**Dist**(1, X) and \mathcal{U} -**Dist**(1, X) is closed in \mathcal{V} -**Dist** $(1, X_0)$ under finite suprema and tensors.

Corollary. For every codirected \mathcal{V} -distributor $\varphi \colon 1 \longrightarrow X_0$, the \mathcal{U} -distributor $\overline{\varphi} \colon 1 \longrightarrow X$ is left adjoint in \mathcal{U} -Dist.

Corollary. For every \mathcal{V} -categorical compact Hausdorff space $X = (X, a_0, \alpha)$, the \mathcal{V} -categories (X, a_0) and HX are codirected complete.