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Ff
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The corresponding category of coalgebras and homomorphisms is denoted as
CoAlg(F).

Theorem. The forgetful functor CoAlg(F) — C creates all colimits and those
limits which are preserved by F.



Theorem. The final coalgebra for F: C — C is a fix-point of F.

@ LAMBEK, JOACHIM (1968). “A fixpoint theorem for complete categories”. In:
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@ CANTOR, GEORG (1891). “Uber eine elementare Frage der Mannigfaltigkeitslehre”. In:
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Example. The finite power-set functor P, : Set — Set admits a final coal-

gebra (for instance, because P, is finitary).

@ BARR, MICHAEL (1993). “Terminal coalgebras in well-founded set theory”. In:
Theoretical Computer Science 114.(2), pp. 299-315.
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Question. What about “power functors” on other (topological) base cate-
gories?

For instance,
® the up-set functor Up: Ord — Ord?
® |iftings of Set-functors to Met (or, more general, to V-Cat)?

V-Cat —F— V-Cat

| |

Set ———— Set.
® (in particular) the Hausdorff functor?

H: V-Cat — V-Cat

Here: Ha(A,B) = /\ \/ a(x,y), for a V-category (X, a) and A, B C X.
yEB x€EA



Theorem. Consider the following commutative diagram of functors.
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1. If F has a fix-point, then so has F. Hence, if F does not have a fix-point,
then neither does F.
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1. If F has a fix-point, then so has F. Hence, if F does not have a fix-point,
then neither does F.
2. If U: X — A is topological, then so is U: CoAlg(F) — CoAlg(F).

In particular, the category CoAlg(F) has limits of shape / if and only if
CoAlg(F) has limits of shape /.



Theorem. Let X be a partially ordered set. Then there is no embedding
w: Up(X) — X.

ﬁ DILWORTH, ROBERT P. and GLEASON, ANDREW M. (1962). “A generalized Cantor
theorem”. In: Proceedings of the American Mathematical Society 13.(5), pp. 704-705.

ﬁ ROSEBRUGH, ROBERT and WoOD, RICHARD J. (1994). “The Cantor-Gleason-Dilworth
Theorem”. URL: https://mta.ca/~rrosebru/articles/cgd.pdf.
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Theorem. Let X be a partially ordered set. Then there is no embedding
w: Up(X) — X.

@ DiLwORTH, ROBERT P. and GLEASON, ANDREW M. (1962). “A generalized Cantor
theorem”. In: Proceedings of the American Mathematical Society 13.(5), pp. 704-705.

@ ROSEBRUGH, ROBERT and WoOD, RICHARD J. (1994). “The Cantor-Gleason-Dilworth

Theorem”. URL: https://mta.ca/~rrosebru/articles/cgd.pdf.

Corollary. The up-set functor Up: Ord — Ord does not admit a final coal-
gebra.


https://mta.ca/~rrosebru/articles/cgd.pdf
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We define now the Hausdorff functor of “upper sets”.
Let f: (X,a) — (Y, b) be a V-functor.
1. Forevery AC X, put PA={y e X | k<\ cpalx,y)}
2. We call a subset A C X of (X, a) increasing whenever A =17 A.
3. We consider the V-category HX = {A C X | A is increasing}, equipped

with
Ha(A, B) = /\ \/ a(x,y),

yEB xEA
for all A, B € HX.
4. Hf: H(X,a) — H(Y, b) sends an increasing subset A C X to 1° f(A).

We obtain the functor H: V-Cat — V-Cat.

@ AKHVLEDIANI, ANDREI, CLEMENTINO, MARIA MANUEL, and THOLEN, WALTER (2010).
“On the categorical meaning of Hausdorff and Gromov distances, |I". In: Topology and its
Applications 157.(8), pp. 1275-1295.

@ STUBBE, ISAR (2010). ““Hausdorff distance” via conical cocompletion”. In: Cahiers de
Topologie et Géométrie Différentielle Catégoriques 51.(1), pp. 51-76.
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Theorem. Let V be a non-trivial quantale and (X, a) be a V-category. There
is no embedding of type H(X, a) — (X, a).

Corollary. Let V be a non-trivial quantale. The Hausdorff functor
H: V-Cat — V-Cat does not admit a terminal coalgebra, neither does any
possible restriction to a full subcategory of V-Cat.

“A cardinal principle of modern mathematical research may be
stated as a maxim: One must always topologize.”

@ STONE, MARSHALL HARVEY (1938). “The representation of Boolean algebras”.
In: Bulletin of the American Mathematical Society 44.(12), pp. 807-816.
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then the canonical isomorphism L — FL is a terminal F-coalgebra.
Definition. F: C — C is a covarietor if CoAlg(F) — C is left adjoint.

Theorem. If C is cocomplete with finite limits and C has and F: C — C
preserves limits of countable chains, then F: C — C is a covarietor.

| Proof. F is a covarietor iff F(—) x X has a terminal coalgebra, for all X. [

Theorem. Let F be a covarietor over a complete category. If CoAlg(F) has
equalisers then CoAlg(F) is complete.

@ LinTON, F. E. J. (1969). “Coequalizers in categories of algebras”. In: Seminar on
Triples and Categorical Homology Theory. Ed. by B. ECKMANN. Vol. 80. Lecture Notes
in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 75—90.
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wellpowered and F sends cones in M to cones in M, then CoAlg(F) has limits
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Proof. Verify the Solution Set Condition for
A: CoAlg(F) — CoAlg(F)". O

Example. If F: Set — Set preserves monocones of a certain type, then the
category CoAlg(F) has limits of the same type.

Example. If F: Top — Top preserves either small monocones or small initial
monocones of a certain type, then the category CoAlg(F) has limits of the
same type.

Corollary. Let F: C — C be an endofunctor on a cocomplete category C. If
C is regularly wellpowered, has an (Epi,RegMono)-factorisation structure and
F: C — C preserves regular monos, then CoAlg(F) has equalisers.



For a compact Hausdorff space X, the classic Vietoris space VX consists of
the set of all closed subsets of X

VX ={K C X | K is closed (= compact)}

equipped with the “hit-and-miss topology” generated by the subbasis of sets of
the form (where U C X is open)

UC={AcVX|ANU+# o} (“A hits U"),
UP ={AecVX|An Ut = o} (“A misses US").
We obtain V: CompHaus — CompHaus.
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For a compact Hausdorff space X, the classic Vietoris space VX consists of
the set of all closed subsets of X

VX ={K C X | K is closed (= compact)}

equipped with the “hit-and-miss topology” generated by the subbasis of sets of
the form (where U C X is open)

UC={AcVX|ANU+# o} (“A hits U"),

U ={AeVX|ANU =2} (“A misses UC").

We obtain V: CompHaus — CompHaus.

@ VIETORIS, LEOPOLD (1922). “Bereiche zweiter Ordnung”. In: Monatshefte fiir
Mathematik und Physik 32.(1), pp. 258-280.
Remark. We consider here the following two variants on Top:
® |ower Vietoris: closed subsets, but only “hit topology".

® compact Vietoris: compact subsets, “hit-and-miss topology".
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Remark. We have the following facts.
® V: Top — Top does not preserve cofiltered limit.

® V: Top — Top preserve initial cofiltered cones.

The lower Vietoris functor preserves initial cofiltered monocones.
Therefore CoAlg(V) has cofiltered limits.

® The compact Vietoris functor preserves initial cofiltered monocones of
Hausdorff spaces. Therefore CoAlg(V) has cofiltered limits of Hausdorff
spaces.

® V: Top —> Top preserves regular monomorphisms.

The category CoAlg(V) has equalisers.



Theorem. The compact Vietoris functor V: Haus — Haus preserves cofil-
tered limits and closed embeddings (= regular monos). Hence, CoAlg(V) is
complete.

@ ZENOR, PHILLIP (1970). “On the completeness of the space of compact subsets”. In:
Proceedings of the American Mathematical Society 26.(1), pp. 190-192.

@ HorMANN, DIRK, NEVES, RENATO, and NORA, PEDRO (2019). “Limits in categories of
Vietoris coalgebras”. In: Mathematical Structures in Computer Science 29.(4),
pp. 552-587.
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Proceedings of the American Mathematical Society 26.(1), pp. 190-192.
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Theorem. The classic Vietoris functor V: CompHaus — CompHaus pre-
serves cofiltered limits and embeddings. Hence, CoAlg(V) is complete.



Theorem. Let D: | — CompHaus be a cofiltered diagram. Then a cone
(pi: L—> D(i))ic; for D is a limit cone if and only if

1. (pi: L — D(i));es is mono and,

2. forevery i € I
ﬂimD(j—> i) = im p;.

Jj—i

That is, “the image of each p; is as large as possible".

@ BoURBAKI, NicOLAS (1942). Eléments de mathématique. 3. Pt. 1: Les structures
fondamentales de I'analyse. Livre 3: Topologie générale. Paris: Hermann & Cie.
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Remark. The lower Vietoris functor V: Top — Top restricts to an endofunctor
on the category StablyComp of stably compact spaces and spectral maps.

discrete
CompHaus @ PosComp ~ StablyComp

forget

Theorem. The lower Vietoris functors V: StablyComp — StablyComp pre-
serve cofiltered limits and embeddings. Hence, CoAlg(V) is complete.

Now comes a little surprise (at least to us):

Corollary. The lower Vietoris functor V: Top — Top admits a terminal coal-
gebra.

Proof. Use that StablyComp — Top is closed under limits and
1+— V91— VVIl«+—...

lives in StablyComp. O
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& Uy — ), n»—>/\\/A

is the structure of an U-algebra on V (the Lawson topology).

® We obtain a lax extension of the ultrafilter monad U = (U, m, e) to V-Rel
that induces a monad on V-Cat.

® |ts algebras are V-categories equipped with a compatible compact
Hausdorff topology, called V-categorical compact Hausdorff spaces.

® We denote the corresponding Eilenberg—Moore category by V-CatCH.
Theorem. For an ordered set (X, <) and a U-algebra (X, «), the following are
equivalent.

(i) a: (UX,U<) — (X, <) is monotone.

(i) G< C X x X is closed; that is, x<: X x X — 2 is continuous.

@ THOLEN, WALTER (2009). “Ordered topological structures”. In: Topology and its
Applications 156.(12), pp. 2148-2157.



We assume that V is a completely distributive quantale, then

& Uy — ), n»—>/\\/A

is the structure of an U-algebra on V (the Lawson topology).

® We obtain a lax extension of the ultrafilter monad U = (U, m, e) to V-Rel
that induces a monad on V-Cat.

® |ts algebras are V-categories equipped with a compatible compact
Hausdorff topology, called V-categorical compact Hausdorff spaces.

® We denote the corresponding Eilenberg—Moore category by V-CatCH.
Theorem. For a V-category (X, a) and a U-algebra (X, ), the following are
equivalent.

(i) a: U(X,a) — (X, a) is a V-functor.

(i) a: (X, ) x (X,a) — (V,&<) is continuous.



Definition. For a V-categorical compact Hausdorff space X = (X, a,«), we
put
HX = {A C X | Ais closed and increasing}

with the restriction of the Hausdorff structure to HX and the hit-and-miss
topology (Vietoris topology).

Remark. That is, the topology generated by the sets
VO ={AcHX| ANV # &} (V open, co-increasing)

and
WH ={AcHX|AC W} (W open, co-decreasing).
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Definition. For a V-categorical compact Hausdorff space X = (X, a,«), we
put
HX = {A C X | Ais closed and increasing}

with the restriction of the Hausdorff structure to HX and the hit-and-miss
topology (Vietoris topology).

Theorem. For every V-categorical compact Hausdorff space X, HX is a V-
categorical compact Hausdorff space. In fact, the construction above defines a
functor H: V-CatCH — V-CatCH.

Compare with: For a compact metric space, the Hausdorff metric induces the
Vietoris topology.

Theorem. The Hausdorff functor H: V-CatCH — V-CatCH preserves cofil-
tered limits. Therefore the forgetful functor CoAlg(H) — V-CatCH is
comonadic. Moreover, CoAlg(H) has equalisers and is therefore complete.
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The order case: The metric case:

ord? £ Top Met” —£— App
\ [ \ |
Ord Met

The general case:

(V-Cat)V —~— U-Cat (X,a: UX x X — V)

\ J(*)o
V-Cat
Remark. U-distributor p: X =Y = p: UX X Y — V so that ..
® p:1—-~X = Ufunctor p: X — V.

® ¢p: X =1 = U-functor ¢: (UX)°P — V.

Definition. X is Cauchy complete if every adjunction ¢ - v is induced by
some x € X.



Theorem. Under some conditions on V.

1. Every U-category in the image of
K: (V-Cat)V — U-Cat

is Cauchy complete.

2. (=)o: U-Cat — V-Cat sends Cauchy complete U-categories to Cauchy
complete V-categories.

3. For every (X, ap, ) in (V-Cat)V, the V-category (X, ag) is Cauchy

complete.

(V-Cat)V —£— U-Cat

\ i(*)o

V-Cat



Under some conditions on V.

Definition. A V-distributor ¢y: 1 —e— X is called codirected whenever the
V-functor
[¢0, —]: V-Dist(1,X) — V

preserves finite suprema and tensors. A V-category X is called codirected
complete whenever X has all “codirected” weighted limits.

Theorem. The inclusion V-functor
U-Dist(1, X) — V-Dist(1, Xp)

has a left adjoint (—): V-Dist(1, Xy) — U-Dist(1, X) and U-Dist(1, X) is
closed in V-Dist(1, Xy) under finite suprema and tensors.

Corollary. For every codirected V-distributor ¢: 1 —e— X, the U-distributor

©: 1 —— X is left adjoint in U-Dist.

Corollary. For every V-categorical compact Hausdorff space X = (X, ag, ),
the V-categories (X, ag) and HX are codirected complete.



