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Definition. For a functor F : C −→ C, one defines coalgebra

homomorphism:
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The corresponding category of coalgebras and homomorphisms is denoted as
CoAlg(F).

Theorem. The forgetful functor CoAlg(F) −→ C creates all colimits and those
limits which are preserved by F.
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Theorem. The final coalgebra for F : C −→ C is a fix-point of F.

Lambek, Joachim (1968). “A fixpoint theorem for complete categories”. In:
Mathematische Zeitschrift 103.(2), pp. 151–161.

Example. The power-set functor P : Set −→ Set does not admit a final coal-
gebra.

Cantor, Georg (1891). “Über eine elementare Frage der Mannigfaltigkeitslehre”. In:
Jahresbericht der Deutschen Mathematiker-Vereinigung 1, pp. 75–78.

Example. The finite power-set functor Pfin : Set −→ Set admits a final coal-
gebra (for instance, because Pfin is finitary).

Barr, Michael (1993). “Terminal coalgebras in well-founded set theory”. In:
Theoretical Computer Science 114.(2), pp. 299–315.
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Question. What about “power functors” on other (topological) base cate-
gories?

For instance,
• the up-set functor Up : Ord −→ Ord?
• liftings of Set-functors to Met (or, more general, to V-Cat)?

V-Cat V-Cat

Set Set.
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• (in particular) the Hausdorff functor?
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a(x , y), for a metric space (X , a) and A,B ⊆ X .
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Theorem. Consider the following commutative diagram of functors.

X X

A A

F

U U

F

1. If F has a fix-point, then so has F. Hence, if F does not have a fix-point,
then neither does F.

2. If U : X −→ A is topological, then so is U : CoAlg(F) −→ CoAlg(F).

In particular, the category CoAlg(F) has limits of shape I if and only if
CoAlg(F) has limits of shape I.
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Theorem. Let X be a partially ordered set. Then there is no embedding
ϕ : Up(X) −→ X .

Dilworth, Robert P. and Gleason, Andrew M. (1962). “A generalized Cantor
theorem”. In: Proceedings of the American Mathematical Society 13.(5), pp. 704–705.

Rosebrugh, Robert and Wood, Richard J. (1994). “The Cantor-Gleason-Dilworth
Theorem”. url: https://mta.ca/~rrosebru/articles/cgd.pdf.

Corollary. The up-set functor Up : Ord −→ Ord does not admit a final coal-
gebra.

https://mta.ca/~rrosebru/articles/cgd.pdf
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We define now the Hausdorff functor of “upper sets”.

Let f : (X , a) −→ (Y , b) be a V-functor.

1. For every A ⊆ X , put ↑a A = {y ∈ X | k ≤
∨

x∈A a(x , y)}.

2. We call a subset A ⊆ X of (X , a) increasing whenever A = ↑a A.

3. We consider the V-category HX = {A ⊆ X | A is increasing}, equipped
with

Ha(A,B) =
∧
y∈B

∨
x∈A

a(x , y),

for all A,B ∈ HX .

4. Hf : H(X , a) −→ H(Y , b) sends an increasing subset A ⊆ X to ↑b f (A).

We obtain the functor H : V-Cat −→ V-Cat.

Akhvlediani, Andrei, Clementino, Maria Manuel, and Tholen, Walter (2010).
“On the categorical meaning of Hausdorff and Gromov distances, I”. In: Topology and its
Applications 157.(8), pp. 1275–1295.

Stubbe, Isar (2010). ““Hausdorff distance” via conical cocompletion”. In: Cahiers de
Topologie et Géométrie Différentielle Catégoriques 51.(1), pp. 51–76.
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Theorem. Let V be a non-trivial quantale and (X , a) be a V-category. There
is no embedding of type H(X , a) −→ (X , a).

Corollary. Let V be a non-trivial quantale. The Hausdorff functor
H : V-Cat −→ V-Cat does not admit a terminal coalgebra, neither does any
possible restriction to a full subcategory of V-Cat.

“A cardinal principle of modern mathematical research may be
stated as a maxim: One must always topologize.”

Stone, Marshall Harvey (1938). “The representation of Boolean algebras”.
In: Bulletin of the American Mathematical Society 44.(12), pp. 807–816.
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Theorem. If the C has and F : C −→ C preserves the limit L of the diagram

1←− F1←− FF1←− . . . ,

then the canonical isomorphism L −→ FL is a terminal F-coalgebra.

Definition. F : C −→ C is a covarietor if CoAlg(F) −→ C is left adjoint.

Theorem. If C is cocomplete with finite limits and C has and F : C −→ C
preserves limits of countable chains, then F : C −→ C is a covarietor.

Proof. F is a covarietor iff F (−)× X has a terminal coalgebra, for all X .

Theorem. Let F be a covarietor over a complete category. If CoAlg(F) has
equalisers then CoAlg(F) is complete.

Linton, F. E. J. (1969). “Coequalizers in categories of algebras”. In: Seminar on
Triples and Categorical Homology Theory. Ed. by B. Eckmann. Vol. 80. Lecture Notes
in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 75–90.
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Theorem. Let F : C −→ C be an endofunctor on a cocomplete category C
and let I be a small category. If C is (E ,M)-structured for cones for I, M-
wellpowered and F sends cones inM to cones inM, then CoAlg(F) has limits
of shape I.

Proof. Verify the Solution Set Condition for

∆: CoAlg(F) −→ CoAlg(F)I .

Example. If F : Set −→ Set preserves monocones of a certain type, then the
category CoAlg(F ) has limits of the same type.

Example. If F : Top −→ Top preserves either small monocones or small initial
monocones of a certain type, then the category CoAlg(F ) has limits of the
same type.

Corollary. Let F : C −→ C be an endofunctor on a cocomplete category C. If
C is regularly wellpowered, has an (Epi,RegMono)-factorisation structure and
F : C −→ C preserves regular monos, then CoAlg(F) has equalisers.
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For a compact Hausdorff space X , the classic Vietoris space VX consists of
the set of all closed subsets of X

VX = {K ⊆ X | K is closed (= compact)}

equipped with the “hit-and-miss topology” generated by the subbasis of sets of
the form (where U ⊆ X is open)

U♦ = {A ∈ VX | A ∩ U 6= ∅} (“A hits U”),

U� = {A ∈ VX | A ∩ U{ = ∅} (“A misses U{”).

We obtain V : CompHaus −→ CompHaus.

Vietoris, Leopold (1922). “Bereiche zweiter Ordnung”. In: Monatshefte für
Mathematik und Physik 32.(1), pp. 258–280.
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Remark. This definition can be generalised to arbitrary topological spaces … but
does not always defines a functor!!
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• compact Vietoris: compact subsets, “hit-and-miss topology”.
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Remark. We have the following facts.

• V : Top −→ Top does not preserve cofiltered limit.

• V : Top −→ Top preserve initial cofiltered cones.

• The lower Vietoris functor preserves initial cofiltered monocones.
Therefore CoAlg(V) has cofiltered limits.

• The compact Vietoris functor preserves initial cofiltered monocones of
Hausdorff spaces. Therefore CoAlg(V) has cofiltered limits of Hausdorff
spaces.

• V : Top −→ Top preserves regular monomorphisms.

• The category CoAlg(V) has equalisers.
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Theorem. The compact Vietoris functor V : Haus −→ Haus preserves cofil-
tered limits and closed embeddings (= regular monos). Hence, CoAlg(V) is
complete.

Zenor, Phillip (1970). “On the completeness of the space of compact subsets”. In:
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Theorem. Let D : I −→ CompHaus be a cofiltered diagram. Then a cone
(pi : L −→ D(i))i∈I for D is a limit cone if and only if

1. (pi : L −→ D(i))i∈I is mono and,

2. for every i ∈ I: ⋂
j→i

im D(j → i) = im pi .

That is, “the image of each pi is as large as possible”.

Bourbaki, Nicolas (1942). Éléments de mathématique. 3. Pt. 1: Les structures
fondamentales de l’analyse. Livre 3: Topologie générale. Paris: Hermann & Cie.



Remark. The lower Vietoris functor V : Top −→ Top restricts to an endofunctor
on the category StablyComp of stably compact spaces and spectral maps.

CompHaus PosComp ∼ StablyComp
discrete

forget

a

Theorem. The lower Vietoris functors V : StablyComp −→ StablyComp pre-
serve cofiltered limits and embeddings. Hence, CoAlg(V) is complete.

Now comes a little surprise (at least to us):

Corollary. The lower Vietoris functor V : Top −→ Top admits a terminal coal-
gebra.

Proof. Use that StablyComp −→ Top is closed under limits and

1←− V1←− VV1←− . . .

lives in StablyComp.
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We assume that V is a completely distributive quantale, then

ξ : UV −→ V, v 7−→
∧
A∈v

∨
A

is the structure of an U-algebra on V (the Lawson topology).

• We obtain a lax extension of the ultrafilter monad U = (U,m, e) to V-Rel
that induces a monad on V-Cat.

Theorem. For a V-category (X , a) and a U-algebra (X , α), the following are
equivalent.
(i) α : U(X , a) −→ (X , a) is a V-functor.

(ii) a : (X , α)× (X , α) −→ (V, ξ≤) is continuous.

Tholen, Walter (2009). “Ordered topological structures”. In: Topology and its
Applications 156.(12), pp. 2148–2157.
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Definition. For a V-categorical compact Hausdorff space X = (X , a, α), we
put

HX = {A ⊆ X | A is closed and increasing}

with the restriction of the Hausdorff structure to HX and the hit-and-miss
topology (Vietoris topology).

Remark. That is, the topology generated by the sets

V♦ = {A ∈ HX | A ∩ V 6= ∅} (V open, co-increasing)

and
W� = {A ∈ HX | A ⊆W } (W open, co-decreasing).



Definition. For a V-categorical compact Hausdorff space X = (X , a, α), we
put

HX = {A ⊆ X | A is closed and increasing}

with the restriction of the Hausdorff structure to HX and the hit-and-miss
topology (Vietoris topology).

Theorem. For every V-categorical compact Hausdorff space X , HX is a V-
categorical compact Hausdorff space.

In fact, the construction above defines a
functor H : V-CatCH −→ V-CatCH.

Compare with: For a compact metric space, the Hausdorff metric induces the
Vietoris topology.

Theorem. The Hausdorff functor H : V-CatCH −→ V-CatCH preserves cofil-
tered limits. Therefore the forgetful functor CoAlg(H) −→ V-CatCH is
comonadic. Moreover, CoAlg(H) has equalisers and is therefore complete.



Definition. For a V-categorical compact Hausdorff space X = (X , a, α), we
put

HX = {A ⊆ X | A is closed and increasing}

with the restriction of the Hausdorff structure to HX and the hit-and-miss
topology (Vietoris topology).

Theorem. For every V-categorical compact Hausdorff space X , HX is a V-
categorical compact Hausdorff space. In fact, the construction above defines a
functor H : V-CatCH −→ V-CatCH.

Compare with: For a compact metric space, the Hausdorff metric induces the
Vietoris topology.

Theorem. The Hausdorff functor H : V-CatCH −→ V-CatCH preserves cofil-
tered limits. Therefore the forgetful functor CoAlg(H) −→ V-CatCH is
comonadic. Moreover, CoAlg(H) has equalisers and is therefore complete.



Definition. For a V-categorical compact Hausdorff space X = (X , a, α), we
put

HX = {A ⊆ X | A is closed and increasing}

with the restriction of the Hausdorff structure to HX and the hit-and-miss
topology (Vietoris topology).

Theorem. For every V-categorical compact Hausdorff space X , HX is a V-
categorical compact Hausdorff space. In fact, the construction above defines a
functor H : V-CatCH −→ V-CatCH.

Compare with: For a compact metric space, the Hausdorff metric induces the
Vietoris topology.

Theorem. The Hausdorff functor H : V-CatCH −→ V-CatCH preserves cofil-
tered limits. Therefore the forgetful functor CoAlg(H) −→ V-CatCH is
comonadic. Moreover, CoAlg(H) has equalisers and is therefore complete.



The order case:

OrdU Top

Ord

K

(−)0

The metric case:

MetU App

Met

K

(−)0

The general case:

(V-Cat)U U-Cat (X , a : UX × X −→ V)

V-Cat

K

(−)0

Remark. U-distributor ϕ : X −◦−⇀ Y = ϕ : UX × Y −→ V so that …

• ϕ : 1 −◦−⇀ X = U-functor ϕ : X −→ V.

• ψ : X −◦−⇀ 1 = U-functor ψ : (UX)op −→ V.

Definition. X is Cauchy complete if every adjunction ϕ a ψ is induced by
some x ∈ X .
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Theorem. Under some conditions on V.

1. Every U-category in the image of

K : (V-Cat)U −→ U-Cat

is Cauchy complete.

2. (−)0 : U-Cat→ V-Cat sends Cauchy complete U-categories to Cauchy
complete V-categories.

3. For every (X , a0, α) in (V-Cat)U, the V-category (X , a0) is Cauchy
complete.

(V-Cat)U U-Cat

V-Cat

K

(−)0



Under some conditions on V.

Definition. A V-distributor ϕ0 : 1 −◦−→ X is called codirected whenever the
V-functor

[ϕ0,−] : V-Dist(1,X) −→ V

preserves finite suprema and tensors. A V-category X is called codirected
complete whenever X has all “codirected” weighted limits.

Theorem. The inclusion V-functor

U-Dist(1,X) −→ V-Dist(1,X0)

has a left adjoint (−) : V-Dist(1,X0) −→ U-Dist(1,X) and U-Dist(1,X) is
closed in V-Dist(1,X0) under finite suprema and tensors.

Corollary. For every codirected V-distributor ϕ : 1 −◦−→ X0, the U-distributor

ϕ : 1 −◦−⇀ X is left adjoint in U-Dist.

Corollary. For every V-categorical compact Hausdorff space X = (X , a0, α),
the V-categories (X , a0) and HX are codirected complete.


