# On limit sets and equicontinity in the hyperspace of continua in dimension one

### Domagoj Jelić

#### Faculty of Science, University of Split

Joint work with Piotr Oprocha

Jul 11, 2024

### The 38th Summer Conference on Topology and its Applications

Domagoj Jelić SUMTOPO 2024 PMFST

# Hyperspaces

A **hyperspace** of a compact metric space (X, d) is a specified family of nonempty compact subsets of X. The hyperspaces of our interest are:

- $\blacksquare$  2<sup>*X*</sup>, the hyperspace of nonempty compact subsets of *X* and
- $\blacksquare$   $\mathcal{C}(X)$ , the hyperspace of continua in X.

# Hyperspaces

A hyperspace of a compact metric space (X, d) is a specified family of nonempty compact subsets of X. The hyperspaces of our interest are:

**2**<sup>X</sup>, the hyperspace of nonempty compact subsets of X and
 **C**(X), the hyperspace of continua in X.
 We endow 2<sup>X</sup> with Hausdorff metric d<sub>H</sub>:

$$(\forall A, B \in 2^X) \, \mathrm{d}_H(A, B) = \inf\{\epsilon \ge 0 \colon A \subset \mathrm{N}(B, \epsilon) \text{ and } B \subset \mathrm{N}(A, \epsilon)\}.$$

# The induced map

Let X be a compact metric space and  $f\colon X\to X$  be a continuous map

・ロト (日) (日) (日) (日) (日) (日)

1. f naturally extends to  $\bar{f}: 2^X \to 2^X$  via  $\bar{f}(A) = f[A]$  $\blacksquare \ \bar{f}$  is a continuous map on  $2^X$ 

# The induced map

Let X be a compact metric space and  $f\colon X\to X$  be a continuous map

- 1. f naturally extends to  $\bar{f}: 2^X \to 2^X$  via  $\bar{f}(A) = f[A]$   $\blacksquare \ \bar{f}$  is a continuous map on  $2^X$  $\blacksquare \ \mathcal{C}(X)$  is  $\bar{f}$ -invariant
- 2. we denote  $\tilde{f} = \bar{f}|_{\mathcal{C}(X)}$  and call it the **induced map**.

#### Question

Let (X, f) be a dynamical system. What are the properties of the induced system  $(\mathcal{C}(X), \tilde{f})$  on the hyperspace of continua in X? How are they related to the base map?

Domagoj Jelić SUMTOPO 2024 PMFST

# Topological graph

- 1. A **topological graph** is a continuum G such that there is a one dimensional simplical complex K whose geometric carrier |K| is homeomorphic to G.
- 2. A **subgraph** is any nondegenerate subcontinuum of a graph.



Figure: E-edge, g-branching point, k-endpoint, F-loop

イロト 不得 トイヨト イヨト



### Topological tree

3. Topological graph not containing any homeomorphic copy of a circle is called a **(topological) tree**.



<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

| Domagoj Jelić |  |
|---------------|--|
| SUMTOPO 2024  |  |

# A few more definitions...

Let (X, f) be a dynamical system and  $x_0 \in X$ .

- The  $\omega$ -limit set of  $x_0$ , denoted by  $\omega_f(x_0)$ , is the limit set of its trajectory.
- We say that  $x_0$  is **recurrent** if  $x_0 \in \omega_f(x_0)$ . The set of all recurrent points of (X, f) is denoted by Rec(f).
- **The Birkhoff center of** (X, f) is the set  $C(f) = \overline{\text{Rec}(f)}$ .

# A few more definitions...

### • $x_0$ is said to be **equicontinuous** if

 $(\forall \epsilon > 0) (\exists \delta > 0) (\forall y \in B(x_0, \delta)) (\forall n \ge 0) d(f^n(y), f^n(x_0)) < \epsilon.$ 

• (X, f) is said to be **equicontinuous** if the set  $\mathcal{E}$  of all the equicontinuous points equals X and **almost equicontinuous** if  $\mathcal{E}$  is dense and  $G_{\delta}$  in X.

### Earlier results

### Theorem (Matviichuk)

Let  $f: T \to T$  be a tree map. Then each  $A \in \mathcal{C}(T)$  is asymptotically periodic under  $\tilde{f}$  or asymptotically degenerate (or both).

#### Corollary

Let  $f: T \to T$  be a tree map. Then  $h_{top}(f) = h_{top}(\tilde{f})$ .

Domagoj Jelić SUMTOPO 2024 PMEST

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ω-limit sets 0●0 Periods in the induced system

Results

### Generalizing to graph maps



Domagoj Jelić SUMTOPO 2024

# Generalizing to graph maps

- existence of circles makes proofs more technical
- too many cases depending on all the possible geometrical structures of graphs
- $\blacksquare$  solution: considering relations between subgraphs and the  $\alpha$  and  $\omega\text{-limit}$  sets of the points forming them

# Generalizing to graph maps

- existence of circles makes proofs more technical
- too many cases depending on all the possible geometrical structures of graphs
- solution: considering relations between subgraphs and the  $\alpha$  and  $\omega$ -limit sets of the points forming them

### Theorem (J., Oprocha)

Let G be a topological graph and let  $(\mathcal{C}(G), \tilde{f})$  be its induced system on the hyperspace of continua. Then every subgraph of G is either asymptotically periodic, wandering or almost all of its iterates are contained in a subsystem which is an almost 1-1 extension of irrational rotation.

# Periodic subcontinua

### Theorem (Fedorenko)

If a nondegenerate interval  $[a, b] \in C(I)$  contains a preimage of a periodic point of period p then [a, b] is asymptotically periodic of period which is a divisor of 2p.

#### Question

Do the topological graphs share some analogous property? Or at least topological trees?

Domagoj Jelić SUMTOPO 2024 ・ロト・西・・田・・田・ 日・今日・

# Motivation

- 1. Describing Birkhoff center of the induced system  $(\mathcal{C}(T), \tilde{f})$ .
  - What does the closure of the set  $Per(\tilde{f})$  equal?
  - Can we have overlaping periodic subontinua of arbitrary periods?
- 2. Proving almost equicontinuity of the induced system.

| Introduction | $\omega$ -limit sets | Periods in the induced system | Results |
|--------------|----------------------|-------------------------------|---------|
| 0000000      | 000                  | 00                            | ●000    |
|              |                      |                               |         |

#### Theorem

Let T be a tree and  $f: T \to T$  its continuous selfmap. Let  $A \in \mathcal{C}(T)$  be the periodic point of  $\tilde{f}$  containing an element z of T such that f(z) = z. Then the period of A is a divisor of  $\operatorname{lcm}\{1, 2, ..., |\operatorname{End}(T)|\}.$ 

#### Corollary

Let  $f: T \to T$  be a continuous selfmap of a topological tree. Denote  $m = \operatorname{lcm}\{1, 2, ..., |\operatorname{End}(T)|\}$  and let  $P_1$  and  $P_2$  be two intersecting periodic points of  $(\mathcal{C}(T), \tilde{f})$  of periods  $p_1$  and  $p_2$ , respectively. If  $p_1 > mp_2$  then  $P_1 \subset P_2$ .

Domagoj Jelić SUMTOPO 2024

# Consequences

### Theorem (Robatian)

Let  $f\colon I\to I$  be an interval map. Then  $(\mathcal{C}(I),\tilde{f})$  possesses an equicontinuous point.

#### Theorem

Let  $f: T \to T$  be a continuous selfmap of a tree. Then  $(\mathcal{C}(T), \tilde{f})$  is almost equicontinuous.

Domagoj Jelić SUMTOPO 2024 PMEST

### Consequences

Theorem (Matviichuk)

Let  $f \colon I \to I$  be an interval map. Then

$$\overline{\operatorname{Per}(\tilde{f})} = \left\{ \{x\} \colon x \in \overline{\operatorname{Per}(f)} \right\} \cup \operatorname{Per}(\tilde{f}) \cup T,$$

where T is a set of pairwise disjoint nondegenerate asymptotically degenerate intervals.

#### Theorem

Let f be a continuous selfmap of a topological tree T. Then

$$\mathrm{C}\left(\widetilde{f}
ight) = \{\{x\} \colon x \in \mathrm{C}(f)\} \cup \mathrm{Per}\left(\widetilde{f}
ight) \cup \mathcal{S}_{f}$$

where  $\mathcal{S}$  consists of wandering subtrees, attracted by solenoidal  $\omega$ -limit sets.

SUMTOPO 2024

# Thank you!

Domagoj Jelić SUMTOPO 2024 PMEST