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Set-theoretic framework and some known weaker choice

principles

Zermelo-Fraenkel system ZF .
CMC (the axiom of countable multiple choice, Form 126 in
[HR]): Every denumerable family of non-empty sets has a
multiple choice function.
BPI (the Boolean Prime Ideal Theorem, Form 14 in [HR]):
Every Boolean algebra has a prime ideal.

Remark 1

BPI is equivalent in ZF to the statement: Every product of
compact Hausdro� spaces is compact.

Remark 2

There are known models of ZF + BPI +¬CMC ,
ZF + CMC +¬BPI , ZF + BPI + CMC +¬AC ,
ZF +¬BPI +¬CMC .
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Basic notation

X = ⟨X , τX ⟩, Y = ⟨Y , τY ⟩- topological spaces;
for a set T , Tdisc := ⟨T ,P(T )⟩- the discrete space with the
underlying set T ;

C (X ,Y )- the set of all continuous mappings from X into Y ;

C (X ) := C (X ,R) where R is equipped with the natural
topology; C (X ) is equipped with the topology of uniform
convergence;

for f ∈ C (X ), Z (f ) := f −1[{0}] is the zero-set of f ;

CO(X ) - the family of all clopen sets in X ;

for f ∈ C (X ) and ∅ ≠ A ⊆ X ,

oscA(f ) := sup{|f (x)− f (y)|; x , y ∈ A} and osc∅(f ) = 0.
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De�nitions of the ring Uℵ0
(X ) and its special subrings

In what follows, we assume that X is a non-empty topological
space. We focus on the following subrings of C (X ):

Uℵ0
(X ) := {f ∈ C (X ) : (∀ϵ ∈ (0,+∞))(∃A ∈ [CO(X )]≤ω)

(
⋃

A = X and (∀A ∈ A) oscA(f ) ≤ ϵ)} (1)

Cc(X ) := {f ∈ C (X ) : |f [X ]| ≤ ℵ0} (2)

C (X ,Rdisc) and C (X ,Rdisc) ∩ Cc(X ) (3)
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Other subrings of Uℵ0
(X )

More generally, we consider the collection Hℵ0
(X ) of all subrings H

of Uℵ0
(X ) satisfying the following conditions:

(i) C (X ,Rdisc) ∩ Cc(X ) ⊆ H;

(ii) (∀h ∈ H)(0 ≤ h →
√
h ∈ H).

The ring C (X ) is equipped with the topology induced by the metric
of uniform convergence ρu de�ned as follows:

(∀f , g ∈ C (X ))ρu(f , g) := sup{min{|f (x)− g(x)|, 1} : x ∈ X}.

Theorem 1

[ZF + CMC ] (∀ H ∈ Hℵ0
(X )) clρu(H) = Uℵ0

(X ).
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What has made us interested in Uℵ0
(X)?

Theorem 2

(Keremedis, Olfati, Wajch, 2023) [ZF + CMC ]

(i) A completely regular space X is strongly zero-dimensional if

and only if Uℵ0
(X ) = C (X ).

(ii) A zero-dimensional space X is a P-space if and only if

Uℵ0
(X ) = C (X ,Rdisc) = C (X ).

Theorem 3

(Olfati, Wajch, 2022) [ZF + CMC ] For every Tychono� space X ,

the following are equivalent:

(i) X is strongly zero-dimensional;

(ii) C (X ) = {f ↾ X : f ∈ Uℵ0
(vX )};

(iii) X is zero-dimensional and C (X ) = {f ↾ X : f ∈ Uℵ0
(v0X )}.
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De�nitions of characters and real ideals of subrings of C (X )

Let H be a subring of C (X ) which contains all constant functions
from C (X ). For c ∈ R, c stands also for the constant function on
X having the unique value c .

(a) A character on H is a function χ : H → R which satis�es the
following conditions:

(i) (∀f , g ∈ H) χ(f + g) = χ(f ) + χ(g);
(ii) (∀f , g ∈ H) χ(f · g) = χ(f ) · χ(g);
(iii) (∀c ∈ R) χ(c) = c .

(b) For w ∈ X , the character on H determined by w (or, the
evaluation on H at w) is the function χw : H → R de�ned as
follows:

(∀f ∈ H) χw (f ) = f (w).

(c) An ideal M of H is called a real ideal of H if the quotient ring
H/M is isomorphic with the �eld R, and M is �xed if there
exists p ∈ X such that M = {f ∈ H : f (p) = 0}.
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Older theorems about characters on C (X ) and Cc(X )

Theorem 4

(Shirota 1952, Boulabiar 2014) [ZF ] A non-empty Tychono� space

X is realcompact if and only if every character on C (X ) is an
evaluation on C (X ) at a point of X .

Theorem 5

(Olfati 2016) [ZFC ] Let X be an N-compact space and let χ be a

character on Cc(X ). Then there exists a unique w ∈ X such that,

for every f ∈ Cc(X ), χ(f ) = f (w).
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New results about characters

Theorem 6

(Olfati, Wajch 2024) [ZF ] Let X be a non-empty N-compact space

and let χ be a character on a subring H of C (X ). Then the

following conditions are satis�ed:

(i) if H = C (X ,Rdisc) or H = Cc(X ), or
H = C (X ,Rdisc) ∩ Cc(X ), then there exists a unique w ∈ X
such that, for every h ∈ H, χ(h) = h(w);

(ii) if H ∈ Hℵ0
(x), in particular, if H = Uℵ0

(X ), then CMC

implies that there exists a unique w ∈ X such that, for every

h ∈ H, χ(h) = h(w).

Remark 3

For a non-empty zero-dimensional T1-space X , the assumption that
X is N-compact is essential in Theorem 6.
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A characterization of N-compactness via real ideals

Theorem 6 is applied to the proof of the following theorem:

Theorem 7

(Olfati, Wajch 2024) [ZF ] Let X be a non-empty zero-dimensional

T1-space. Then the following conditions are equivalent:

(i) X is N-compact;

(ii) every real ideal of C (X ,Rdisc) is �xed;

(iii) every real ideal of Cc(X ) is �xed;

(iv) every real ideal of C (X ,Rdisc) ∩ Cc(X ) is �xed.

Furthermore, CMC implies that each of the conditions (i)�(iv) is

equivalent to the following condition:

(v) every real ideal of Uℵ0
(X ) is �xed.
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More applications of characters

Among other results, Theorem 6 is applied to the proof of the
following theorem:

Theorem 8

(Olfati, Wajch 2024) [ZF + CMC ] Let X be a non-empty

N-compact space which admits its Banaschewski compacti�cation

β0X . Suppose that H is a subring of Uℵ0
(X ) such that

Cc(X ) ⊆ H and, for every h ∈ H, if Z (h) = ∅, then 1
h ∈ H, for

every h ∈ H with 0 ≤ h, we have
√
h ∈ H.

Let Y be a realcompact space such that the rings H and C (Y ) are
isomorphic. Then the spaces X and Y are homeomorphic and

strongly zero-dimensional. Furthermore, if H = Cc(X ), then the

spaces X and Y are both functionally countable.
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Corollaries

Corollary 1

[ZF + CMC ] Let X be a non-empty strongly zero-dimensional
T1-space which admits its Banaschewski compacti�cation. Then
there exists a Tychono� space Y such that the rings Cc(X ) and
C (Y ) are isomorphic if and only if X is functionally countable.

Corollary 2

[ZF + CMC ] Let X be a non-empty N-compact space which
admits its Banaschewski compacti�cation. Then X is strongly
zero-dimensional if and only if there exists a Tychono� space Y
such that the rings Uℵ0

(X ) and C (Y ) are isomorphic.
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On Banaschewski compacti�cations

For a non-empty space X and a subring H of C (X ), Max(H) is
the set Max(H) of all maximal ideals of H equipped with the
hull-kernel topology. The base of Max(H) is the family

B = {{M ∈ Max(H) : f /∈ M} : f ∈ H}.

Theorem 9

(Wajch 2024) [ZF + CMC ] Let X be a non-empty

zero-dimensional T1-space. Let H be a subring of Uℵ0
(X ) such

that Cc(X ) ⊆ H and, for every h ∈ H, if Z (h) = ∅, then 1
h ∈ H.

Then the Banaschewski compacti�cation β0X exists if and only if

Max(H) is compact. Furthermore, if β0X exists, then

β0X ≈Max(H).
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Some equivalences of BPI

Theorem 10

[ZF + CMC ] The following are equivalent:

(i) BPI ;

(ii) every zero-dimensional T1-space admits its Banaschewski

compacti�cation;

(iii) for every zero-dimesional T1-space X , the space

Max(Uℵ0
(X )) is compact;

(iv) for every zero-dimesional T1-space X , the space Max(Cc(X ))
is compact.

Moreover, in (ii)-(iv) �zero-dimensional T1-space� can be replaced

with �Cantor cube�.
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On Herrlich and Chew theorem

Theorem 11

(Herrlich (1967), independently Chew (1970)) [ZFC ] A
zero-dimensional T1-space is N-compact if and only if every

ultra�lter in CO(X ) with c.i.p. is �xed.

Theorem 12

(Olfati, Wajch 2022-23) The Herrlich-Chew Theorem is valid in

ZF .

Theorem 13

(Olfati, Wajch 2022-23) [ZF + CMC ] A zero-dimensional

T1-space is N-compact if and only if every ultra�lter in COδ(X )
with c.i.p is �xed where

COδ(X ) = {
⋂

A : A ∈ [CO]≤ω \ {∅}}.
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On Hewitt's characterization of realcompactness

Theorem 14

(Hewitt, 1948) [ZFC ] A Tychono� space is realcompact if and

only if every z-ultra�lter in X with c.i.p. is �xed.

De�nition

Let X be a topological space. A family A of zero-sets of X is

functionally accessible if there exists a subfamily {gZ : Z ∈ A} of

C (X ) such that, for every Z ∈ A, Z = Z (gZ ). A z-�lter F in X

has the weak countable intersection property if, for every

denumerable functionally accessible subfamily A of F ,
⋂
A ≠ ∅.

Theorem 15

(Olfati, Wajch, 2022-24) [ZF ] A Tychono� space X is realcompact

if and only if every z-ultra�lter in X with the weak countable

intersection property is �xed.
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Thank you for your attention very much!
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