An uncountable family of smooth fans that admit transitive homeomorphisms

Goran Erceg (joint work with Iztok Banič, Judy Kennedy, Chris Mouron and Van Nall)

University of Split, Croatia

38th Summer Conference on Topology and Its Applications Coimbra, Portugal, July 2024

Basic definitions and notations

Definition

A continuum is a non-empty compact connected metric space. A subcontinuum is a subspace of a continuum, which is itself a continuum.

Definition

Let X be a continuum.

- The continuum X is unicoherent, if for any subcontinua A and B of X such that $X = A \cup B$, the compactum $A \cap B$ is connected.
- On the continuum X is hereditarily unicoherent provided that each of its subcontinua is unicoherent.
- The continuum X is a dendroid, if it is an arcwise connected, hereditarily unicoherent continuum.
- **(**) Let X be a continuum. If X is homeomorphic to [0, 1], then X is an arc.
- **3** A point x in an arc X is called an end-point of the arc X, if there is a homeomorphism $\varphi : [0, 1] \to X$ such that $\varphi(0) = x$.
- Let X be a dendroid. A point x ∈ X is called an end-point of the dendroid X, if for every arc A in X that contains x, x is an end-point of A. The set of all end-points of X will be denoted by E(X).
- A continuum X is a simple triod, if it is homeomorphic to $([-1,1] \times \{0\}) \cup (\{0\} \times [0,1]).$

Basic definitions and notations

Definition

- A point x in a simple triod X is called the top-point or, briefly, the top of the simple triod X, if there is a homeomorphism $\varphi: ([-1,1] \times \{0\}) \cup (\{0\} \times [0,1]) \to X$ such that $\varphi(0,0) = x$.
- **(a)** Let X be a dendroid. A point $x \in X$ is called a ramification-point of the dendroid X, if there is a simple triod T in X with the top x. The set of all ramification-points of X will be denoted by R(X).
- **1** The continuum X is a fan, if it is a dendroid with at most one ramification point v, which is called the top of the fan X (if it exists).
- 2 Let X be a fan. For all points x and y in X, we define A[x, y] to be the arc in X with end-points x and y, if $x \neq y$. If x = y, then we define $A[x, y] = \{x\}$.
- **3** Let X be a fan with the top v. We say that that the fan X is smooth if for any $x \in X$ and for any sequence (x_n) of points in X,

$$\lim_{n\to\infty} x_n = x \Longrightarrow \lim_{n\to\infty} A[v, x_n] = A[v, x].$$

[●] Let X be a fan. We say that X is a Cantor fan, if X is homeomorphic to the continuum $\bigcup_{c \in C} A_c$, where $C \subseteq [0, 1]$ is the standard Cantor set and for each $c \in C$, A_c is the convex segment in the plane from (0, 0) to (c, 1).

Let (X, f) be a dynamical system. We say that (X, f) is

- Itransitive, if for all non-empty open sets U and V in X, there is a non-negative integer n such that fⁿ(U) ∩ V ≠ Ø.
- ense orbit transitive, if there is a point x ∈ X such that its trajectory {x, f(x), f²(x), f³(x),...} is dense in X. We call such a point x a transitive point in (X, f).

We say that the mapping f is *transitive*, if (X, f) is transitive.

Let X be a non-empty compact metric space and let $F \subseteq X \times X$ be a relation on X. If F is closed in $X \times X$, then we say that F is *a closed relation on X*.

Definition

Let X be a non-empty compact metric space and let ${\cal F}$ be a closed relation on X. We call

$$X_F^+ = \Big\{ (x_1, x_2, x_3, \ldots) \in \prod_{i=1}^\infty X \mid \text{ for each positive integer } i, (x_i, x_{i+1}) \in F \Big\}$$

the Mahavier product of F, and we call

$$X_F = \Big\{(\ldots, x_{-2}, x_{-1}, x_0; x_1, x_2, \ldots) \in \prod_{i=-\infty}^{\infty} X \mid \text{ for each integer } i, (x_i, x_{i+1}) \in F \Big\}$$

the two-sided Mahavier product of F.

Basic definitions and notations

Definition

Let X be a non-empty compact metric space and let F be a closed relation on X. The function $\sigma_F^+: X_F^+ \to X_F^+$, defined by

$$\sigma_F^+(x_1, x_2, x_3, x_4, \ldots) = (x_2, x_3, x_4, \ldots)$$

for each $(x_1, x_2, x_3, x_4, \ldots) \in X_F^+$, is called *the shift map on* X_F^+ . The function $\sigma_F : X_F \to X_F$, defined by

$$\sigma_F(\ldots, x_{-3}, x_{-2}, x_{-1}, x_0; x_1, x_2, x_3, \ldots) = (\ldots, x_{-2}, x_{-1}, x_0, x_1; x_2, x_3, x_4, \ldots)$$

for each $(\ldots, x_{-3}, x_{-2}, x_{-1}, x_0; x_1, x_2, x_3, \ldots) \in X_F$, is called the shift map on X_F .

Note that σ_F is always a homeomorphism while σ_F^+ may not be a homeomorphism.

Definition

Let X be a compact metric space and let F be a closed relation on X. The dynamical system

- **(** X_F^+, σ_F^+) is called a Mahavier dynamical system.
- **2** (X_F, σ_F) is called a two-sided Mahavier dynamical system.

We use $\ensuremath{\mathbb{X}}$ to denote the set

$$\mathbb{X} = ([0,1] \cup [2,3] \cup [4,5] \cup [6,7] \cup \ldots) \cup \{\infty\}.$$

We equip ${\mathbb X}$ with the Alexandroff one-point compactification topology ${\mathcal T}.$

We use $\ensuremath{\mathbb{X}}$ to denote the set

$$\mathbb{X} = ([0,1] \cup [2,3] \cup [4,5] \cup [6,7] \cup \ldots) \cup \{\infty\}.$$

We equip X with the Alexandroff one-point compactification topology \mathcal{T} . For each non-negative integer k, let $q_k = 1 - \frac{1}{2^k}$ and let

$$X = [q_0, q_1] \cup [q_2, q_3] \cup [q_4, q_5] \cup [q_6, q_7] \cup \ldots \{1\}$$

(we equip X with the usual topology). Note that the compacta \mathbb{X} and X are homeomorphic.

We use \mathbb{X} to denote the set

$$\mathbb{X} = ([0,1] \cup [2,3] \cup [4,5] \cup [6,7] \cup \ldots) \cup \{\infty\}.$$

We equip X with the Alexandroff one-point compactification topology \mathcal{T} . For each non-negative integer k, let $q_k = 1 - \frac{1}{2^k}$ and let

$$X = [q_0, q_1] \cup [q_2, q_3] \cup [q_4, q_5] \cup [q_6, q_7] \cup \ldots \{1\}$$

(we equip X with the usual topology). Note that the compacta X and X are homeomorphic.

Let $h: X \to \mathbb{X}$ be any homeomorphism such that for each non-negative integer k, $h(q_k) = k$. On the space \mathbb{X} , we always use the metric $d_{\mathbb{X}}$ that is for all $x, y \in \mathbb{X}$ defined by

$$d_{\mathbb{X}}(x,y) = |h^{-1}(y) - h^{-1}(x)|.$$

Definition

We use the product metric $\mathsf{D}_{\mathbb{X}}$ on the product $\prod_{k=-\infty}^{\infty} \mathbb{X}$, which is defined by

$$\mathsf{D}_{\mathbb{X}}(\mathbf{x},\mathbf{y}) = \sup \left\{ \frac{\mathsf{d}_{\mathbb{X}}(\mathbf{x}(k),\mathbf{y}(k))}{2^{|k|}} \mid k \text{ is an integer} \right\}$$

for all $\mathbf{x}, \mathbf{y} \in \prod_{k=-\infty}^{\infty} \mathbb{X}$.

We use *H* to denote the closed relation on X that is defined as follows:

$$\begin{split} H = & \Big\{ \left(t, t^{\frac{1}{3}}\right) \ \big| \ t \in I_1 \Big\} \cup \Big\{ \left(t, (t-2)^2 + 2\right) \ \big| \ t \in I_2 \Big\} \cup \\ & \Big\{ \left(t, t+2\right) \ \big| \ t \in I_1 \cup I_2 \cup I_3 \cup \dots \Big\} \cup \Big\{ \left(t, t-2\right) \ \big| \ t \in I_2 \cup I_3 \cup I_4 \cup \dots \Big\} \cup \\ & \Big\{ \left(t, t\right) \ \big| \ t \in I_3 \cup I_4 \cup I_5 \cup \dots \Big\} \cup \Big\{ \left(\infty, \infty\right) \Big\}. \end{split}$$

Theorem

Let X be a compact metric space and let F be a closed relation on X such that $p_1(F) = p_2(F) = X$. The following statements are equivalent.

- The map σ_F^+ is transitive.
- **2** The homeomorphism σ_F is transitive.

Theorem

The dynamical system (X_H, σ_H) is transitive.

A model for X_H

Definition

Let C be the standard middle-third Cantor set in [0,1]. For each positive integer k, we use C_k to denote $C_k = C \cap [c_k, d_k]$, where $c_1 = 0$, $d_1 = \frac{1}{3}$, and for each positive integer k, $c_{k+1} = d_k + \frac{1}{3^k}$ and $d_{k+1} = c_{k+1} + \frac{1}{3^{k+1}}$.

For each positive integer k, C_k is a Cantor set and $C = \left(\bigcup_{k=1}^{\infty} C_k\right) \cup \{1\}$. Also, note that for all positive integers k and ℓ , $k \neq \ell \implies C_k \cap C_\ell = \emptyset$.

A model for X_H

Definition

Let C be the standard middle-third Cantor set in [0,1]. For each positive integer k, we use C_k to denote $C_k = C \cap [c_k, d_k]$, where $c_1 = 0$, $d_1 = \frac{1}{3}$, and for each positive integer k, $c_{k+1} = d_k + \frac{1}{3^k}$ and $d_{k+1} = c_{k+1} + \frac{1}{3^{k+1}}$.

For each positive integer k, C_k is a Cantor set and $C = \left(\bigcup_{k=1}^{\infty} C_k\right) \cup \{1\}$. Also, note that for all positive integers k and ℓ , $k \neq \ell \implies C_k \cap C_\ell = \emptyset$.

In the following theorem, we obtain a model for our two-sided Mahavier product X_{H} .

Theorem

There is a homeomorphism

$$arphi:\mathbb{X}_{H}
ightarrow\left(igcup_{k=1}^{\infty}\left(C_{k} imes\left[0,rac{1}{2^{2k-1}}
ight]
ight)
ight)\cup\left\{\left(1,0
ight)
ight\}$$

such that for each $\mathbf{x} \in \mathbb{X}_H$, if all the coordinates of \mathbf{x} are even, then $\varphi(\mathbf{x}) = (c, 0)$ for some $c \in C$.

A model for \mathbb{X}_H

Equivalence relations on \mathbb{X}_H

We use ${\mathbb A}$ to denote the uncountable product

$$\mathbb{A}=\{1,2\}\times\{3,4\}\times\{5,6\}\times\{7,8\}\times\{9,10\}\times\ldots$$

Using the set \mathbb{A} , we define three relations on \mathbb{X}_H .

Definition

We define the relation \approx on \mathbb{X}_H as follows: for all $\mathbf{x}, \mathbf{y} \in \mathbb{X}_H$, we define $\mathbf{x} \approx \mathbf{y}$ if and only if one of the following holds:

②
$$p_2(arphi_0(\mathbf{x})) = 0$$
 and $arphi_0(\mathbf{y}) = (1,0),$ or $arphi_0(\mathbf{x}) = (1,0)$ and $p_2(arphi_0(\mathbf{y})) = 0,$

3
$$p_2(\varphi_0(\mathbf{x})) = p_2(\varphi_0(\mathbf{y})) = 0;$$

Let $\mathbf{a} = (a_1, a_2, a_3, \ldots) \in \mathbb{A}$. Then we define the relation \approx_a on \mathbb{X}_H as follows: for all $\mathbf{x}, \mathbf{y} \in \mathbb{X}_H$, we define $\mathbf{x} \approx_a \mathbf{y}$ if and only if one of the following holds:

① x = **y**,

② there is a positive integer k and there is an $i \in \{1, 2, 3, \dots, a_k\}$ such that either

•
$$\mathbf{x} \in M_{k^2+2}$$
 and $\mathbf{y} \in M_{k^2+2+i}$, and
• $p_2(\varphi_0(\mathbf{x})) = p_2(\varphi_0(\mathbf{y}))$

or

•
$$\mathbf{y} \in M_{k^2+2}$$
 and $\mathbf{x} \in M_{k^2+2+i}$, and
• $p_2(\varphi_0(\mathbf{x})) = p_2(\varphi_0(\mathbf{y}));$

Equivalence relations on \mathbb{X}_H

Definition

For each $\mathbf{a}=(a_1,a_2,a_3,\ldots)\in\mathbb{A},$ we define the relation $\sim_{\mathbf{a}}$ on \mathbb{X}_H by

 $\mathbf{x} \sim_{\mathbf{a}} \mathbf{y} \quad \Longleftrightarrow \quad \mathbf{x} \approx \mathbf{y} \text{ or there is } \mathbf{a} \in \mathbb{A} \text{ such that } \mathbf{x} \approx_{\mathbf{a}} \mathbf{y}$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{X}_{H}$.

Note that $\sim_{\mathbf{a}}$ is an equivalence relation on \mathbb{X}_{H} .

Definition

For each $\mathbf{a} \in \mathbb{A}$, we use $F_{\mathbf{a}}$ to denote the quotient space

$$F_{\mathbf{a}} = \mathbb{X}_{H}/_{\sim_{\mathbf{a}}}.$$

Theorem

For each $\mathbf{a} \in \mathbb{A}$, $F_{\mathbf{a}}$ is a smooth fan.

Observation

Let $\mathbf{a} \in \mathbb{A}$. For all $\mathbf{x}, \mathbf{y} \in \mathbb{X}_H$,

$$\mathbf{x} \sim_{\mathbf{a}} \mathbf{y} \iff \sigma_H(\mathbf{x}) \sim_{\mathbf{a}} \sigma_H(\mathbf{y}).$$

Theorem

Let $\mathbf{a} \in \mathbb{A}$. The mapping $\sigma_H^\star : F_{\mathbf{a}} \to F_{\mathbf{a}}$, defined by

 $\sigma_{H}^{\star}([\mathbf{x}]) = [\sigma_{H}(\mathbf{x})]$

for each $\mathbf{x} \in \mathbb{X}_H$, is a transitive homeomorphism.

Observation

Note that for each positive integer k, this transitive homeomorphism σ_{H}^{*} , restricted to $M_{k}/_{\sim a} = \{[\mathbf{x}] \mid \mathbf{x} \in M_{k}\}$, is just the identity.

We use ${\mathcal F}$ to denote the family

$$\mathcal{F} = \{ F_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A} \}.$$

We use ${\mathcal F}$ to denote the family

$$\mathcal{F} = \{ F_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A} \}.$$

Each member of ${\mathcal F}$ is a smooth fan that admits a transitive homeomorphism.

We use ${\mathcal F}$ to denote the family

$$\mathcal{F} = \{ F_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A} \}.$$

Each member of ${\cal F}$ is a smooth fan that admits a transitive homeomorphism. Recall that ${\Bbb A}$ is uncountable.

We use ${\mathcal F}$ to denote the family

$$\mathcal{F} = \{ F_{\mathbf{a}} \mid \mathbf{a} \in \mathbb{A} \}.$$

Each member of ${\cal F}$ is a smooth fan that admits a transitive homeomorphism. Recall that ${\Bbb A}$ is uncountable.

So, if we show that for all $a, b \in \mathbb{A}$,

 $\mathbf{a} \neq \mathbf{b} \implies F_{\mathbf{a}}$ and $F_{\mathbf{b}}$ are not homeomorphic,

then this proves that ${\cal F}$ is a family of uncountably many pairwise non-homeomorphic smooth fans that admit transitive homeomorphisms.

Let X be a fan with the top o. We define the set JuMa(X) as follows:

 $\begin{aligned} \mathsf{JuMa}(X) &= \\ \{x \in X \setminus \{o\} \mid \text{ there is a sequence } (e_n) \text{ in } E(X) \text{ such that } \lim_{n \to \infty} e_n = x \}. \end{aligned}$

Definition

Let X be a fan with the top o. For each $e \in E(X)$, we use $A_X[o, e]$ to denote the arc in X from o to e.

Proposition

Let X and Y be fans with tops o_X and o_Y , respectively, and let $f: X \to Y$ be a homeomorphism. Then for each $e \in E(X)$,

 $|A_X[o_X, e] \cap \mathsf{JuMa}(X)| = |A_Y[o_Y, f(e)] \cap \mathsf{JuMa}(Y)|.$

Here |S| denotes the cardinality of S for any set S.

Corollary

Let X and Y be fans with tops o_X and o_Y , respectively. If there is $e \in E(X)$ such that for each $e' \in E(Y)$,

 $|A_Y[o_Y, e'] \cap \mathsf{JuMa}(Y)| \neq |A_X[o_X, e] \cap \mathsf{JuMa}(X)|,$

then X and Y are not homeomorphic.

Theorem

For all $\mathbf{a}, \mathbf{b} \in \mathbb{A}$,

$$\mathbf{a} \neq \mathbf{b} \implies F_{\mathbf{a}}$$
 and $F_{\mathbf{b}}$ are not homeomorphic.

Theorem

There is a family of uncountable many pairwise non-homeomorphic smooth fans that admit transitive homeomorphisms.

Thank you!