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Basic definitions and notations

Definition

A continuum is a non-empty compact connected metric space. A
subcontinuum is a subspace of a continuum, which is itself a continuum.

Definition

Let X be a continuum.
1 The continuum X is unicoherent, if for any subcontinua A and B of X

such that X = A ∪ B, the compactum A ∩ B is connected.
2 The continuum X is hereditarily unicoherent provided that each of its

subcontinua is unicoherent.
3 The continuum X is a dendroid, if it is an arcwise connected, hereditarily

unicoherent continuum.
4 Let X be a continuum. If X is homeomorphic to [0, 1], then X is an arc.
5 A point x in an arc X is called an end-point of the arc X , if there is a

homeomorphism φ : [0, 1] → X such that φ(0) = x .
6 Let X be a dendroid. A point x ∈ X is called an end-point of the

dendroid X , if for every arc A in X that contains x , x is an end-point of
A. The set of all end-points of X will be denoted by E(X ).

7 A continuum X is a simple triod, if it is homeomorphic to
([−1, 1]× {0}) ∪ ({0} × [0, 1]).
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Basic definitions and notations

Definition

9 A point x in a simple triod X is called the top-point or, briefly, the top of
the simple triod X , if there is a homeomorphism
φ : ([−1, 1]× {0}) ∪ ({0} × [0, 1]) → X such that φ(0, 0) = x .

10 Let X be a dendroid. A point x ∈ X is called a ramification-point of the
dendroid X , if there is a simple triod T in X with the top x . The set of
all ramification-points of X will be denoted by R(X ).

11 The continuum X is a fan, if it is a dendroid with at most one
ramification point v , which is called the top of the fan X (if it exists).

12 Let X be a fan. For all points x and y in X , we define A[x , y ] to be the
arc in X with end-points x and y , if x ̸= y . If x = y , then we define
A[x , y ] = {x}.

13 Let X be a fan with the top v . We say that that the fan X is smooth if
for any x ∈ X and for any sequence (xn) of points in X ,

lim
n→∞

xn = x =⇒ lim
n→∞

A[v , xn] = A[v , x ].

14 Let X be a fan. We say that X is a Cantor fan, if X is homeomorphic to
the continuum

⋃
c∈C Ac , where C ⊆ [0, 1] is the standard Cantor set and

for each c ∈ C , Ac is the convex segment in the plane from (0, 0) to (c, 1).
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Basic definitions and notations

Definition

Let (X , f ) be a dynamical system. We say that (X , f ) is

1 transitive, if for all non-empty open sets U and V in X , there is a
non-negative integer n such that f n(U) ∩ V ̸= ∅.

2 dense orbit transitive, if there is a point x ∈ X such that its
trajectory {x , f (x), f 2(x), f 3(x), . . .} is dense in X . We call such a
point x a transitive point in (X , f ).

We say that the mapping f is transitive, if (X , f ) is transitive.
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Basic definitions and notations

Definition

Let X be a non-empty compact metric space and let F ⊆ X × X be a relation
on X . If F is closed in X × X , then we say that F is a closed relation on X .

Definition

Let X be a non-empty compact metric space and let F be a closed relation on
X . We call

X+
F =

{
(x1, x2, x3, . . .) ∈

∞∏
i=1

X | for each positive integer i , (xi , xi+1) ∈ F
}

the Mahavier product of F , and we call

XF =
{
(. . . , x−2, x−1, x0;x1, x2, . . .) ∈

∞∏
i=−∞

X | for each integer i , (xi , xi+1) ∈ F
}

the two-sided Mahavier product of F .
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Basic definitions and notations

Definition

Let X be a non-empty compact metric space and let F be a closed relation on
X . The function σ+

F : X+
F → X+

F , defined by

σ+
F (x1, x2, x3, x4, . . .) = (x2, x3, x4, . . .)

for each (x1, x2, x3, x4, . . .) ∈ X+
F , is called the shift map on X+

F . The function
σF : XF → XF , defined by

σF (. . . , x−3, x−2, x−1, x0; x1, x2, x3, . . .) = (. . . , x−2, x−1, x0, x1; x2, x3, x4, . . .)

for each (. . . , x−3, x−2, x−1, x0; x1, x2, x3, . . .) ∈ XF , is called the shift map on
XF .

Note that σF is always a homeomorphism while σ+
F may not be a

homeomorphism.

Definition

Let X be a compact metric space and let F be a closed relation on X . The
dynamical system

1 (X+
F , σ+

F ) is called a Mahavier dynamical system.

2 (XF , σF ) is called a two-sided Mahavier dynamical system.
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We use X to denote the set

X = ([0, 1] ∪ [2, 3] ∪ [4, 5] ∪ [6, 7] ∪ . . .) ∪ {∞}.

We equip X with the Alexandroff one-point compactification topology T .

For each non-negative integer k, let qk = 1− 1
2k

and let

X = [q0, q1] ∪ [q2, q3] ∪ [q4, q5] ∪ [q6, q7] ∪ . . . {1}

(we equip X with the usual topology). Note that the compacta X and X are
homeomorphic.

Let h : X → X be any homeomorphism such that for each non-negative integer
k, h(qk) = k. On the space X, we always use the metric dX that is for all
x , y ∈ X defined by

dX(x , y) = |h−1(y)− h−1(x)|.

Definition

We use the product metric DX on the product
∏∞

k=−∞ X, which is defined by

DX(x, y) = sup
{dX(x(k), y(k))

2|k|
∣∣ k is an integer

}
for all x, y ∈

∏∞
k=−∞ X.
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We use H to denote the closed relation on X that is defined as follows:

H =
{(

t, t
1
3
) ∣∣ t ∈ I1

}
∪
{(

t, (t − 2)2 + 2
) ∣∣ t ∈ I2

}
∪{

(t, t + 2)
∣∣ t ∈ I1 ∪ I2 ∪ I3 ∪ . . .

}
∪
{
(t, t − 2)

∣∣ t ∈ I2 ∪ I3 ∪ I4 ∪ . . .
}
∪{

(t, t)
∣∣ t ∈ I3 ∪ I4 ∪ I5 ∪ . . .

}
∪
{
(∞,∞)

}
.

... ... ...

...... .

...

8 8 8
8

. . ( , )
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Transitivity

Theorem

Let X be a compact metric space and let F be a closed relation on X
such that p1(F ) = p2(F ) = X . The following statements are equivalent.

1 The map σ+
F is transitive.

2 The homeomorphism σF is transitive.

Theorem

The dynamical system (XH , σH) is transitive.
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A model for XH

Definition

Let C be the standard middle-third Cantor set in [0, 1]. For each positive
integer k, we use Ck to denote Ck = C ∩ [ck , dk ], where c1 = 0, d1 =

1
3
, and for

each positive integer k, ck+1 = dk +
1
3k

and dk+1 = ck+1 +
1

3k+1 .

For each positive integer k, Ck is a Cantor set and C =

(
∞⋃
k=1

Ck

)
∪ {1}. Also,

note that for all positive integers k and ℓ, k ̸= ℓ =⇒ Ck ∩ Cℓ = ∅.

In the following theorem, we obtain a model for our two-sided Mahavier
product XH .

Theorem

There is a homeomorphism

φ : XH →

(
∞⋃
k=1

(
Ck ×

[
0,

1

22k−1

]))
∪ {(1, 0)}

such that for each x ∈ XH , if all the coordinates of x are even, then
φ(x) = (c, 0) for some c ∈ C .
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A model for XH

I

C1

2

C2 C3 ...

0

1

Slika: The space

(
∞⋃
k=1

(
Ck ×

[
0,

1

22k−1

]))
∪ {(1, 0)}
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Equivalence relations on XH

We use A to denote the uncountable product

A = {1, 2} × {3, 4} × {5, 6} × {7, 8} × {9, 10} × . . .

Using the set A, we define three relations on XH .

Definition

We define the relation ≈ on XH as follows: for all x, y ∈ XH , we define x ≈ y if
and only if one of the following holds:

1 x = y,

2 p2(φ0(x)) = 0 and φ0(y) = (1, 0), or φ0(x) = (1, 0) and p2(φ0(y)) = 0,

3 p2(φ0(x)) = p2(φ0(y)) = 0;

.....
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Definition

Let a = (a1, a2, a3, . . .) ∈ A. Then we define the relation ≈a on XH as follows:
for all x, y ∈ XH , we define x ≈a y if and only if one of the following holds:

1 x = y,

2 there is a positive integer k and there is an i ∈ {1, 2, 3, . . . , ak} such that
either

1 x ∈ Mk2+2 and y ∈ Mk2+2+i , and
2 p2(φ0(x)) = p2(φ0(y))

or

1 y ∈ Mk2+2 and x ∈ Mk2+2+i , and
2 p2(φ0(x)) = p2(φ0(y));

Lk 2+2 Lk 2+2+1 Lk k
2+2+a Lk 2+2+2k

...
... ...

...

Mk+2

M

2

k+2+12

k
Mk+2+a2k+2+2{ { { {

Slika: The relation ≈a from Definition 14
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Equivalence relations on XH

Definition

For each a = (a1, a2, a3, . . .) ∈ A, we define the relation ∼a on XH by

x ∼a y ⇐⇒ x ≈ y or there is a ∈ A such that x ≈a y

for all x, y ∈ XH .

Note that ∼a is an equivalence relation on XH .

Definition

For each a ∈ A, we use Fa to denote the quotient space

Fa = XH/∼a .

Theorem

For each a ∈ A, Fa is a smooth fan.
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Observation

Let a ∈ A. For all x, y ∈ XH ,

x ∼a y ⇐⇒ σH(x) ∼a σH(y).

Theorem

Let a ∈ A. The mapping σ⋆
H : Fa → Fa, defined by

σ⋆
H([x]) = [σH(x)]

for each x ∈ XH , is a transitive homeomorphism.

Observation

Note that for each positive integer k, this transitive homeomorphism σ⋆
H ,

restricted to Mk/∼a = {[x] | x ∈ Mk}, is just the identity.
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The family F

Definition

We use F to denote the family

F = {Fa | a ∈ A}.

Each member of F is a smooth fan that admits a transitive homeomorphism.

Recall that A is uncountable.

So, if we show that for all a, b ∈ A,

a ̸= b =⇒ Fa and Fb are not homeomorphic,

then this proves that F is a family of uncountably many pairwise
non-homeomorphic smooth fans that admit transitive homeomorphisms.
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JuMa

Definition

Let X be a fan with the top o. We define the set JuMa(X ) as follows:

JuMa(X ) =

{x ∈ X \ {o} | there is a sequence (en) in E (X ) such that lim
n→∞

en = x}.

Definition

Let X be a fan with the top o. For each e ∈ E (X ), we use AX [o, e] to
denote the arc in X from o to e.
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JuMa

Proposition

Let X and Y be fans with tops oX and oY , respectively, and let
f : X → Y be a homeomorphism. Then for each e ∈ E (X ),

|AX [oX , e] ∩ JuMa(X )| = |AY [oY , f (e)] ∩ JuMa(Y )|.

Here |S | denotes the cardinality of S for any set S .

Corollary

Let X and Y be fans with tops oX and oY , respectively. If there is
e ∈ E (X ) such that for each e′ ∈ E (Y ),

|AY [oY , e
′] ∩ JuMa(Y )| ≠ |AX [oX , e] ∩ JuMa(X )|,

then X and Y are not homeomorphic.
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Main theorem

Theorem

For all a,b ∈ A,

a ̸= b =⇒ Fa and Fb are not homeomorphic.

Theorem

There is a family of uncountable many pairwise non-homeomorphic
smooth fans that admit transitive homeomorphisms.
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Thank you!
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