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Frame presentations

Recall that a frame is a kind of lattice abstracting the lattice of open

sets of a topological space. A locale is a frame viewed as a space (with

maps in the reverse direction to frame homomorphisms).

An advantage frames have over spaces is that, since frames are

algebraic structures, they can be presented by generators and relations.

For example, the frame of reals may be presented as

OR = ⟨ℓq, uq, q ∈ Q | ℓp =
∨
q>p

ℓq, uq =
∨
p<q

up,∨
q∈Q

ℓq = 1,
∨
q∈Q

uq = 1,

ℓp ∧ uq = 0 for p ≥ q,

ℓp ∨ uq = 1 for p < q⟩.
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Uniform spaces

A uniform space is a set X equipped with a filter E of binary relations

on X satisfying, for all E ∈ E :

1. ∆X ⊆ E ,

2. E o ∈ E ,
3. ∃F ∈ E . F ◦F ⊆ E .

The elements of E are called entourages and should be thought of as

approximate equality relations.

Uniform spaces are a general setting in which to discuss uniform

continuity and completeness.

A metric d : X × X → R induces a uniformity with basic entourages

{(x , y) | d(x , y) < ε}.
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Uniform locales

A pre-uniform locale is then a locale X equipped with a filter E on

O(X × X ) satisfying the same axioms as before.

The uniformity on a pre-uniform locale might induce a ‘coarser

topology’ than that given by the underlying locale.

Define v ◁E u (for u, v ∈ OX , E ∈ E) to mean E ◦ (v ⊕ v) ≤ u ⊕ u

and v ◁E u to mean v ◁E u for some E ∈ E .

A pre-uniform locale (X , E) is a uniform locale if u =
∨

v◁Eu v for all u.
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Completeness

There is a notion of completeness for uniform locales. Every uniform

locale has a unique completion: a complete uniform locale into which it

uniformly embeds as a dense sublocale.

The completion of a uniform space/locale is usually constructed in

terms of (regular) Cauchy filters.

A regular Cauchy filter on a uniform locale (X , E) is a proper filter F on

OX such that

• for every E ∈ E , there is some u ∈ F with u ⊕ u ≤ E ,

• if u ∈ F then there is a v ∈ F such that v ◁E u.
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The locale of regular Cauchy filters

We construct the classifying locale CX of regular Cauchy filters on X .

We define a presentation with a generator [u ∈ F ] for each u ∈ OX and

the following relations:

• [1 ∈ F ] = 1

• [u ∧ v ∈ F ] = [u ∈ F ] ∧ [v ∈ F ]

• [0 ∈ F ] ≤ 0

•
∨

u⊕u≤E [u ∈ F ] = 1 for all E ∈ E
• [u ∈ F ] ≤

∨
v◁Eu[v ∈ F ]

The points of the resulting frame are precisely the regular Cauchy filters

as we defined before.

There is an obvious locale embedding γ : X ↪→ CX obtained by sending

[u ∈ F ] ∈ OCX to u ∈ OX . This is the completion of X .

6



The locale of regular Cauchy filters

We construct the classifying locale CX of regular Cauchy filters on X .

We define a presentation with a generator [u ∈ F ] for each u ∈ OX and

the following relations:

• [1 ∈ F ] = 1

• [u ∧ v ∈ F ] = [u ∈ F ] ∧ [v ∈ F ]

• [0 ∈ F ] ≤ 0

•
∨

u⊕u≤E [u ∈ F ] = 1 for all E ∈ E
• [u ∈ F ] ≤

∨
v◁Eu[v ∈ F ]

The points of the resulting frame are precisely the regular Cauchy filters

as we defined before.

There is an obvious locale embedding γ : X ↪→ CX obtained by sending

[u ∈ F ] ∈ OCX to u ∈ OX . This is the completion of X .

6



The locale of regular Cauchy filters

We construct the classifying locale CX of regular Cauchy filters on X .

We define a presentation with a generator [u ∈ F ] for each u ∈ OX and

the following relations:

• [1 ∈ F ] = 1

• [u ∧ v ∈ F ] = [u ∈ F ] ∧ [v ∈ F ]

• [0 ∈ F ] ≤ 0

•
∨

u⊕u≤E [u ∈ F ] = 1 for all E ∈ E
• [u ∈ F ] ≤

∨
v◁Eu[v ∈ F ]

The points of the resulting frame are precisely the regular Cauchy filters

as we defined before.

There is an obvious locale embedding γ : X ↪→ CX obtained by sending

[u ∈ F ] ∈ OCX to u ∈ OX . This is the completion of X .

6



The locale of regular Cauchy filters

We construct the classifying locale CX of regular Cauchy filters on X .

We define a presentation with a generator [u ∈ F ] for each u ∈ OX and

the following relations:

• [1 ∈ F ] = 1

• [u ∧ v ∈ F ] = [u ∈ F ] ∧ [v ∈ F ]

• [0 ∈ F ] ≤ 0

•
∨

u⊕u≤E [u ∈ F ] = 1 for all E ∈ E
• [u ∈ F ] ≤

∨
v◁Eu[v ∈ F ]

The points of the resulting frame are precisely the regular Cauchy filters

as we defined before.

There is an obvious locale embedding γ : X ↪→ CX obtained by sending

[u ∈ F ] ∈ OCX to u ∈ OX . This is the completion of X .

6



The locale of regular Cauchy filters

We construct the classifying locale CX of regular Cauchy filters on X .

We define a presentation with a generator [u ∈ F ] for each u ∈ OX and

the following relations:

• [1 ∈ F ] = 1

• [u ∧ v ∈ F ] = [u ∈ F ] ∧ [v ∈ F ]

• [0 ∈ F ] ≤ 0

•
∨

u⊕u≤E [u ∈ F ] = 1 for all E ∈ E
• [u ∈ F ] ≤

∨
v◁Eu[v ∈ F ]

The points of the resulting frame are precisely the regular Cauchy filters

as we defined before.

There is an obvious locale embedding γ : X ↪→ CX obtained by sending

[u ∈ F ] ∈ OCX to u ∈ OX . This is the completion of X .

6



The locale of regular Cauchy filters

We construct the classifying locale CX of regular Cauchy filters on X .

We define a presentation with a generator [u ∈ F ] for each u ∈ OX and

the following relations:

• [1 ∈ F ] = 1

• [u ∧ v ∈ F ] = [u ∈ F ] ∧ [v ∈ F ]

• [0 ∈ F ] ≤ 0

•
∨

u⊕u≤E [u ∈ F ] = 1 for all E ∈ E
• [u ∈ F ] ≤

∨
v◁Eu[v ∈ F ]

The points of the resulting frame are precisely the regular Cauchy filters

as we defined before.

There is an obvious locale embedding γ : X ↪→ CX obtained by sending

[u ∈ F ] ∈ OCX to u ∈ OX . This is the completion of X .

6



What about Cauchy sequences?

Metric spaces have uniform structures and the uniform completion

agrees with the familiar metric completion.

Completions of metric spaces constructed using Cauchy sequences, not

Cauchy filters. Why not use Cauchy sequences for uniform completions?

Unfortunately, in the usual approach Cauchy sequences do not give the

correct completion of uniform spaces.

Compare how sequentially compact spaces can fail to be compact.

But Cauchy sequences do work in the pointfree setting!
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Modulated Cauchy sequences

A Cauchy sequence in a uniform space (X , E) is a map s : N → X such

that ∀E ∈ B. ∃N ∈ N. ∀n, n′ ≥ N. (s(n), s(n′)) ∈ E where B is some

chosen base for the uniformity E .

There is no apparent way to define a classifying locale for such logically

complex objects. Instead we ‘Skolemise’ the definition to give

∃m : B → N. ∀E ∈ B. ∀n, n′ ≥ m(E ). (s(n), s(n′)) ∈ E .

(Actually, Skolemisation needs the axiom of choice, so we use left-total

relations m : B +→ N instead of functions.)

Such an m is called a modulus of Cauchyness. A sequence equipped

with such a modulus is called a modulated Cauchy sequence.

We can now define a locale of modulated Cauchy sequences.
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The locale of modulated Cauchy sequences

Let X = (X , E) be a uniform locale with base B ⊆ E . We give a

presentation for the frame of ModCauchy(X ).

The generators are:

• [s(n) ∈ u] for each n ∈ N and u ∈ OX ,

• [m(E ) = k] for E ∈ B and k ∈ N.

The relations are:

•
∨

α

∧
u∈Fα

[s(n) ∈ u] = [s(n) ∈
∨

α

∧
Fα] for each family (Fα)α of

finite subsets of OX ,

• 1 ≤
∨

k∈N[m(E ) = k] for each E ∈ B,
• [m(E ) = k] ≤

∨
u⊕u′≤E [s(n) ∈ u] ∧ [s(n′) ∈ u′] for E ∈ B, k ∈ N

and n, n′ ≥ k.
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The limit map

We now define a map from ModCauchy(X ) to the completion of X ,

which ‘takes the limit’ of the Cauchy sequences.

This map q : ModCauchy(X ) → CX is given by

q∗([u ∈ F ]) =
∨
E∈B

∨
v◁Eu′◁Eu

∨
k ′≤k∈N

[m(E ) = k ′] ∧ [s(k) ∈ v ].

Intuitively, this says q((s,m)) lies in u iff s(k) ∈ v for some k ∈ N and

v ◁E u′ ◁E u such that m(E ) = k ′ ≤ k .
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The limit map as a quotient

We claim q : ModCauchy(X ) → CX is a well-behaved quotient map.

We show this by defining a kind of ‘multivalued section’ to q.

More formally, we define a join-preserving map

g : OModCauchy(X ) → OCX such that gq∗ = idOC and

g(a ∧ q∗(b)) = g(a) ∧ b. This exhibits q as a triquotient map.

I will omit the definition of g , but intuitively it associates a point p of

the completion to a collection of modulated Cauchy sequences that

converge to p ‘sufficiently quickly’.
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The upshot

Note that we can now throw away our old construction of CX and

recover the completion by taking a quotient by the corresponding

internal equivalence relation on ModCauchy(X ).

How do we make sense of this, given that this was supposed to be

impossible for uniform spaces?

The spatial approach would involve restricting to the points of

ModCauchy(X ) before we take the quotient. And the spatial

coreflection does not commute with the quotient.

Moreover, note that ModCauchy(X ) can be highly non-spatial when B
is uncountable. Intuition: NB is non-spatial for uncountable B.
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