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Plan: two questions of Gruenhage and Tkachuk
Q1: Does every compact (Fréchet-Urysohn) space of countable
tightness have a countable disjoint local π-base at every point?

Q2: Suppose that X is a (hereditarily) Lindelof space for which the
inequality πχ(K ,X ) > ω holds for every compact set K ⊆ X . Must
X be discretely selective?



Q1: Does every compact space of countable tightness have a
countable disjoint local π-base at every point?

▷ B is a π-base at x ∈ X if every neighbourhood of x contains some member of B.

▷ The π-character of x ∈ X is πχ(x ,X ) := min{|B| : B is a π-base at x}.

▷ The π-character of X is πχ(X ) := sup{πχ(x ,X ) : x ∈ X}.

▷ The tightness of X is the least upper bound cardinal t(X ) so that for all A ⊆ X ,
A =

⋃
{B : B ∈ [A]≤t(X )}
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Theorem(Šapirovskǐı, 1975): If X is compact and t(X ) = ω, then
there is a countable local π-base at every point.

Remark: If a space X has the disjoint shrinking property and X has a
countable local π-base at a point x ∈ X , then there exists a disjoint
local π-base at the point x .

▷ A space X has the disjoint (discrete) shrinking property if for every sequence
{Un : n ∈ ω} of open sets there are open sets Vn ⊆ Un so that {Vn : n ∈ ω} is
disjoint (discrete).



Theorem(Šapirovskǐı, 1975): If X is compact and t(X ) = ω, then
there is a countable local π-base at every point.

Remark: If a space X has the disjoint shrinking property and X has a
countable local π-base at a point x ∈ X , then there exists a disjoint
local π-base at the point x .

▷ A space X has the disjoint (discrete) shrinking property if for every sequence
{Un : n ∈ ω} of open sets there are open sets Vn ⊆ Un so that {Vn : n ∈ ω} is
disjoint (discrete).
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Theorem(Dow, 2016): [PFA] Every compact space of countable
tightness has a dense set of points with countable character.

Theorem(Gruenhage, Tkachuk, 2023):
• Under PFA, every compact space of countable tightness has a countable
disjoint local π-base at every point.

• If X is a compact space of countable tightness. If every open subspace of X is
non-separable, then X has a countable disjoint local π-base at every point.

• Every compact W -space has a countable disjoint local π-base at every
point.

Theorem(Tkachuk, Wilson, 2019): A compact space has a disjoint
local π-base at a point x ∈ X if and only if X \ {x} is not
cellular-compact.
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Q1: Does every compact space of countable tightness have a
countable disjoint local π-base at every point?

▷ A sequence {xα : α < κ} is free if {xγ : γ < α} ∩ {xγ : γ ≥ α} = ∅ for all α < κ.

Theorem(BA, Dow, –): If X is a compact space and x ∈ X , then
either x has a countable pairwise disjoint local π-base or there is a
ω1-free sequence converging to x .



Theorem(BA, Dow, –): If X is a compact space and x ∈ X , then
either x has a countable pairwise disjoint local π-base or there is a
ω1-free sequence converging to x .

Proof.

1. Fix x, τX generated by C (X , [0, 1]). Let F = {f ∈ C (X , [0, 1]) : f (x) = 0}.

2. Let M0 be es, and Z 0
0 :=

⋂
{f −1([0, 1)) : f ∈ F ∩M0}.

3. Now, fix γ < ω1, and suppose we have constructed countable elementary submodels
Mα+1, functions fα ∈ F , and sets Zα

β , for all β ≤ α < γ, such that

3.1 Zα
β is a Gδ-set;

3.2 Zα
β ⊇ Zα+1

β ;

3.3 Zα
α =

⋂
{f −1([0, 1)) : f ∈ F ∩Mα},

3.4 f −1
α ([0, 1)) ̸⊇ Zα

β ;

3.5 Zα+1
β = Zα

β ∩ f −1
α ({1}), for β < α, and Zα+1

α = Zα
α ∩ f −1

α ([0, 1));
3.6 Mα =

⋃
β<α Mβ , if α is limit; and

3.7 Mα, fα ∈ Mα+1, (hence F ∩Mα and {Zα
β : β < α} are in Mα+1).
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If γ is a limit: Let Mγ =
⋃

α<δ Mα.

• Declare Zγ
γ :=

⋂
{f −1([0, 1)) : f ∈ F ∩Mγ}, and Zγ

β :=
⋂

β≤α<γ Z
α
β , for each β < γ.

Non-empty by compactness. If Zγ
γ = {x}, we’re done... if not, continue

• Let Mγ+1 ≺ H(θ) be countable so that Mγ , {Zγ
β : β < γ} ∈ Mγ+1.

• Suppose (⋆) there is f ∈ H(θ) so that f −1([0, 1)) ̸⊇ Zγ
β , for all β < γ.

Apply elementarity to find fγ ∈ Mγ+1 with the same property. For every β < γ, let

Zγ+1
β := Zγ

β ∩ f −1
γ ({1}), and Zγ+1

γ := Zγ
γ ∩ f −1

γ ([0, 1)).

Continuing for successor γ + 2:

• Let Mγ+2 ≺ H(θ) be countable so that Mγ+1, {Zγ
β : β < γ} ∈ Mγ+2.

• Find f in H(θ) so that f −1([0, 1)) ̸⊇ Zγ+1
γ+1 . Elementarity: find similar f̃ ∈ Mγ+2.

• Take any fγ+1 ∈ Mγ+2 so that f −1
γ+1([0, 1)) ⊆ f −1

γ ([0, 1)) ∩ f̃ −1([0, 1)).

• For β < γ, Zγ+1
β = Zγ

β ∩ f −1
γ ({1}), and Zγ+1

γ+1 =
⋂
{f −1([0, 1)) : f ∈ F ∩Mγ+1}.

Claim: At any successful stage γ, the family {Z γ
β : β < γ} is discrete.
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Q2: Suppose that X is a (hereditarily) Lindelof space for which the
inequality πχ(K ,X ) > ω holds for every compact set K ⊆ X . Must
X be discretely selective?

▷ B is a π-base for A ⊆ X if every neighbourhood of A contains some member of B.

▷ The π-character of A ⊆ X is πχ(A,X ) := min{|B| : B is a π-base for A}.

→ πχ(x ,X ) = πχ({x},X )

→ A ⊆ X has non-empty interior then πχ(A,X ) = 1.
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Theorem(BA, Dow, –): If X is hereditarily Lindelof for which
πχ(K ,X ) > ω for every compact set K ⊆ X , then X is discretely
selective.

Proof (By contradiction):

1. Pairwise disjoint {Un : n ∈ ω} and Y its set of non-locally finite witnesses.

2. Choose y0 ∈ Y and W0 ∈ N (y0) so that W0 contains no Un.

3. Given {yξ ∈ Y ,Wξ ∈ N (yξ) : ξ < α} so that no finite union covers infinitely many
Un’s, construct yα and Wα.

4. Find Sα = {xn ∈ Un : n ∈ ω} almost disjoint from every Wξ, ξ < α.

5. (assumption X is not ds) let yα ∈ Y limit of Sα.

6. {Un \
⋃

i≤n Wn : n ∈ ω} is not a π-base for yα... we can get Wα.

7. {yα : α < ω1} (is Lindelof) has open cover {Wα : α < ω1} with no countable
subcover: if {Wξ : ξ < α} was a cover, then yα is in Wξ for some ξ < α which is not
possible since Sα is almost disjoint from Wξ.
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Lindelof case?

Consider the same drawing...

→ Pairwise disjoint {Un : n ∈ ω} and Y its set of non-locally finite witnesses. (Y is
closed hence Lindelof)

→ Lindelof + Tychonoff =⇒ normal.

→ Normal + pseudocompact =⇒ countably compact.

→ Countably compact + Lindelof =⇒ compact.

If Y is pseudocompact, it is compact. Then use πχ(Y ) > ω to get a closed discrete
sequence with xn ∈ Un.

If Y is not pseudocompact, fix a continuous f : Y → [0,∞) that diverges to infinity.
By normality, f : X → [0,∞)

There are lots of partial sequences that are closed discrete.
How can we get a full one?
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