Disjoint π **-bases on compact spaces**

Joint work with Alan Dow 38th Summer Conference in Topology and Its Applications

Hector BA UNC Charlotte

July 11, 24

Plan: two questions of Gruenhage and Tkachuk

Q1: Does every compact (Fréchet-Urysohn) space of countable tightness have a countable disjoint local π -base at every point?

Q2: Suppose that X is a (hereditarily) Lindelof space for which the inequality $\pi\chi(K, X) > \omega$ holds for every compact set $K \subseteq X$. Must X be discretely selective?

 $\triangleright \mathcal{B}$ is a π -base at $x \in X$ if every neighbourhood of x contains some member of \mathcal{B} .

 $\triangleright \mathcal{B}$ is a π -base at $x \in X$ if every neighbourhood of x contains some member of \mathcal{B} .

▷ The π -character of $x \in X$ is $\pi\chi(x, X) := \min\{|\mathcal{B}| : \mathcal{B} \text{ is a } \pi\text{-base at } x\}.$

 $\triangleright \mathcal{B}$ is a π -base at $x \in X$ if every neighbourhood of x contains some member of \mathcal{B} .

▷ The π -character of $x \in X$ is $\pi\chi(x, X) := \min\{|\mathcal{B}| : \mathcal{B} \text{ is a } \pi\text{-base at } x\}$.

▷ The π -character of X is $\pi\chi(X) := \sup\{\pi\chi(x, X) : x \in X\}.$

 $\triangleright \mathcal{B}$ is a π -base at $x \in X$ if every neighbourhood of x contains some member of \mathcal{B} .

- ▷ The π -character of $x \in X$ is $\pi\chi(x, X) := \min\{|\mathcal{B}| : \mathcal{B} \text{ is a } \pi\text{-base at } x\}$.
- ▷ The π -character of X is $\pi\chi(X) := \sup\{\pi\chi(x, X) : x \in X\}.$

▷ The **tightness** of X is the least upper bound cardinal t(X) so that for all $A \subseteq X$, $\overline{A} = \bigcup \{\overline{B} : B \in [A]^{\leq t(X)}\}$ Theorem(Šapirovskiĭ, 1975): If X is compact and $t(X) = \omega$, then there is a countable local π -base at every point.

Theorem(Šapirovskiĭ, 1975): If X is compact and $t(X) = \omega$, then there is a countable local π -base at every point.

Remark: If a space X has the disjoint shrinking property and X has a countable local π -base at a point $x \in X$, then there exists a disjoint local π -base at the point x.

Theorem(Šapirovskiĭ, 1975): If X is compact and $t(X) = \omega$, then there is a countable local π -base at every point.

Remark: If a space X has the disjoint shrinking property and X has a countable local π -base at a point $x \in X$, then there exists a disjoint local π -base at the point x.

▷ A space X has the **disjoint (discrete) shrinking property** if for every sequence $\{U_n : n \in \omega\}$ of open sets there are open sets $V_n \subseteq U_n$ so that $\{V_n : n \in \omega\}$ is disjoint (discrete).

Theorem(Gruenhage, Tkachuk, 2023):

 Under PFA, every compact space of countable tightness has a countable disjoint local π-base at every point.

Theorem(Gruenhage, Tkachuk, 2023):

- Under PFA, every compact space of countable tightness has a countable disjoint local π-base at every point.
- If X is a compact space of countable tightness. If every open subspace of X is non-separable, then X has a **countable disjoint local** π-base at every point.

Theorem(Gruenhage, Tkachuk, 2023):

- Under PFA, every compact space of countable tightness has a countable disjoint local π-base at every point.
- If X is a compact space of countable tightness. If every open subspace of X is non-separable, then X has a **countable disjoint local** π-base at every point.
- Every compact *W*-space has a **countable disjoint local** *π*-base at every **point**.

Theorem(Gruenhage, Tkachuk, 2023):

- Under PFA, every compact space of countable tightness has a countable disjoint local π-base at every point.
- If X is a compact space of countable tightness. If every open subspace of X is non-separable, then X has a **countable disjoint local** π-base at every point.
- Every compact *W*-space has a **countable disjoint local** *π*-base at every **point**.

Theorem(Tkachuk, Wilson, 2019): A compact space has a disjoint local π -base at a point $x \in X$ if and only if $X \setminus \{x\}$ is not cellular-compact.

 $\triangleright \mathsf{A} \text{ sequence } \{x_{\alpha} : \alpha < \kappa\} \text{ is free if } \overline{\{x_{\gamma} : \gamma < \alpha\}} \cap \overline{\{x_{\gamma} : \gamma \geq \alpha\}} = \emptyset \text{ for all } \alpha < \kappa.$

Theorem(BA, Dow, –): If X is a compact space and $x \in X$, then either x has a countable pairwise disjoint local π -base or there is a ω_1 -free sequence converging to x.

Proof.

1. Fix x, τ_X generated by C(X, [0, 1]). Let $F = \{f \in C(X, [0, 1]) : f(x) = 0\}$.

Proof.

1. Fix x, τ_X generated by C(X, [0, 1]). Let $F = \{f \in C(X, [0, 1]) : f(x) = 0\}$.

2. Let M_0 be es, and $Z_0^0 := \bigcap \{ f^{-1}([0,1)) : f \in F \cap M_0 \}.$

Proof.

- 1. Fix x, τ_X generated by C(X, [0, 1]). Let $F = \{f \in C(X, [0, 1]) : f(x) = 0\}$.
- 2. Let M_0 be es, and $Z_0^0 := \bigcap \{ f^{-1}([0,1)) : f \in F \cap M_0 \}.$
- 3. Now, fix $\gamma < \omega_1$, and suppose we have constructed countable elementary submodels $M_{\alpha+1}$, functions $f_{\alpha} \in F$, and sets Z_{β}^{α} , for all $\beta \leq \alpha < \gamma$, such that

Proof.

- 1. Fix x, τ_X generated by C(X, [0, 1]). Let $F = \{f \in C(X, [0, 1]) : f(x) = 0\}$.
- 2. Let M_0 be es, and $Z_0^0 := \bigcap \{ f^{-1}([0,1)) : f \in F \cap M_0 \}.$
- 3. Now, fix $\gamma < \omega_1$, and suppose we have constructed countable elementary submodels $M_{\alpha+1}$, functions $f_{\alpha} \in F$, and sets Z_{β}^{α} , for all $\beta \leq \alpha < \gamma$, such that 3.1 Z_{β}^{α} is a G_{δ} -set; 3.2 $Z_{\beta}^{\alpha} \supseteq Z_{\beta}^{\alpha+1}$; 3.3 $Z_{\alpha}^{\alpha} = \bigcap \{f^{-1}([0,1)) : f \in F \cap M_{\alpha}\},$ 3.4 $f_{\alpha}^{-1}([0,1)) \not\supseteq Z_{\beta}^{\alpha}$; 3.5 $Z_{\beta}^{\alpha+1} = Z_{\beta}^{\alpha} \cap f_{\alpha}^{-1}(\{1\})$, for $\beta < \alpha$, and $Z_{\alpha}^{\alpha+1} = Z_{\alpha}^{\alpha} \cap f_{\alpha}^{-1}([0,1))$; 3.6 $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$, if α is limit; and 3.7 $M_{\alpha}, f_{\alpha} \in M_{\alpha+1}$, (hence $F \cap M_{\alpha}$ and $\{Z_{\beta}^{\alpha} : \beta < \alpha\}$ are in $M_{\alpha+1}$).

Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness.

 Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue

- Declare Z^γ_γ := ∩{f⁻¹([0, 1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$

- Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$
- Suppose (*) there is $f \in H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z^{\gamma}_{\beta}$, for all $\beta < \gamma$.

- Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$
- Suppose (*) there is $f \in H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z^{\gamma}_{\beta}$, for all $\beta < \gamma$.

Apply elementarity to find $f_\gamma \in M_{\gamma+1}$ with the same property. For every $eta < \gamma$, let

$$Z_\beta^{\gamma+1}:=Z_\beta^\gamma\cap f_\gamma^{-1}(\{1\})\text{, and } Z_\gamma^{\gamma+1}:=Z_\gamma^\gamma\cap f_\gamma^{-1}([0,1)).$$

- Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$
- Suppose (*) there is $f \in H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z^{\gamma}_{\beta}$, for all $\beta < \gamma$.

Apply elementarity to find $f_\gamma \in M_{\gamma+1}$ with the same property. For every $eta < \gamma$, let

$$Z_\beta^{\gamma+1}:=Z_\beta^\gamma\cap f_\gamma^{-1}(\{1\})\text{, and } Z_\gamma^{\gamma+1}:=Z_\gamma^\gamma\cap f_\gamma^{-1}([0,1)).$$

Continuing for successor $\gamma + 2$:

• Let $M_{\gamma+2} \prec H(\theta)$ be countable so that $M_{\gamma+1}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+2}.$

- Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$
- Suppose (*) there is $f \in H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z^{\gamma}_{\beta}$, for all $\beta < \gamma$.

Apply elementarity to find $f_\gamma \in M_{\gamma+1}$ with the same property. For every $eta < \gamma$, let

$$Z_\beta^{\gamma+1}:=Z_\beta^\gamma\cap f_\gamma^{-1}(\{1\})\text{, and }Z_\gamma^{\gamma+1}:=Z_\gamma^\gamma\cap f_\gamma^{-1}([0,1)).$$

Continuing for successor $\gamma + 2$:

- Let $M_{\gamma+2} \prec H(\theta)$ be countable so that $M_{\gamma+1}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+2}.$
- Find f in $H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z_{\gamma+1}^{\gamma+1}$. Elementarity: find similar $\tilde{f} \in M_{\gamma+2}$.

- Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$
- Suppose (*) there is $f \in H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z^{\gamma}_{\beta}$, for all $\beta < \gamma$.

Apply elementarity to find $f_\gamma \in M_{\gamma+1}$ with the same property. For every $eta < \gamma$, let

$$Z_\beta^{\gamma+1}:=Z_\beta^\gamma\cap f_\gamma^{-1}(\{1\})\text{, and }Z_\gamma^{\gamma+1}:=Z_\gamma^\gamma\cap f_\gamma^{-1}([0,1)).$$

Continuing for successor $\gamma + 2$:

- Let $M_{\gamma+2} \prec H(\theta)$ be countable so that $M_{\gamma+1}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+2}.$
- Find f in $H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z_{\gamma+1}^{\gamma+1}$. Elementarity: find similar $\tilde{f} \in M_{\gamma+2}$.
- Take any $f_{\gamma+1} \in M_{\gamma+2}$ so that $f_{\gamma+1}^{-1}([0,1)) \subseteq f_{\gamma}^{-1}([0,1)) \cap \tilde{f}^{-1}([0,1)).$

- Declare Z^γ_γ := ∩{f⁻¹([0,1)) : f ∈ F ∩ M_γ}, and Z^γ_β := ∩_{β≤α<γ} Z^α_β, for each β < γ. Non-empty by compactness. If Z^γ_γ = {x}, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$
- Suppose (*) there is $f \in H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z^{\gamma}_{\beta}$, for all $\beta < \gamma$.

Apply elementarity to find $f_\gamma \in M_{\gamma+1}$ with the same property. For every $eta < \gamma$, let

$$Z_\beta^{\gamma+1}:=Z_\beta^\gamma\cap f_\gamma^{-1}(\{1\})\text{, and } Z_\gamma^{\gamma+1}:=Z_\gamma^\gamma\cap f_\gamma^{-1}([0,1)).$$

Continuing for successor $\gamma + 2$:

- Let $M_{\gamma+2} \prec H(\theta)$ be countable so that $M_{\gamma+1}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+2}.$
- Find f in $H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z_{\gamma+1}^{\gamma+1}$. Elementarity: find similar $\tilde{f} \in M_{\gamma+2}$.
- Take any $f_{\gamma+1} \in M_{\gamma+2}$ so that $f_{\gamma+1}^{-1}([0,1)) \subseteq f_{\gamma}^{-1}([0,1)) \cap \tilde{f}^{-1}([0,1)).$

• For
$$\beta < \gamma$$
, $Z_{\beta}^{\gamma+1} = Z_{\beta}^{\gamma} \cap f_{\gamma}^{-1}(\{1\})$, and $Z_{\gamma+1}^{\gamma+1} = \bigcap \{f^{-1}([0,1)) : f \in F \cap M_{\gamma+1}\}.$

- Declare $Z_{\gamma}^{\gamma} := \bigcap \{ f^{-1}([0,1)) : f \in F \cap M_{\gamma} \}$, and $Z_{\beta}^{\gamma} := \bigcap_{\beta \le \alpha < \gamma} Z_{\beta}^{\alpha}$, for each $\beta < \gamma$. Non-empty by compactness. If $Z_{\gamma}^{\gamma} = \{x\}$, we're done... if not, continue
- Let $M_{\gamma+1} \prec H(\theta)$ be countable so that $M_{\gamma}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+1}.$
- Suppose (*) there is $f \in H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z^{\gamma}_{\beta}$, for all $\beta < \gamma$.

Apply elementarity to find $f_\gamma \in M_{\gamma+1}$ with the same property. For every $eta < \gamma$, let

$$Z_\beta^{\gamma+1}:=Z_\beta^\gamma\cap f_\gamma^{-1}(\{1\})\text{, and } Z_\gamma^{\gamma+1}:=Z_\gamma^\gamma\cap f_\gamma^{-1}([0,1)).$$

Continuing for successor $\gamma + 2$:

- Let $M_{\gamma+2} \prec H(\theta)$ be countable so that $M_{\gamma+1}, \{Z_{\beta}^{\gamma} : \beta < \gamma\} \in M_{\gamma+2}.$
- Find f in $H(\theta)$ so that $f^{-1}([0,1)) \not\supseteq Z_{\gamma+1}^{\gamma+1}$. Elementarity: find similar $\tilde{f} \in M_{\gamma+2}$.
- Take any $f_{\gamma+1} \in M_{\gamma+2}$ so that $f_{\gamma+1}^{-1}([0,1)) \subseteq f_{\gamma}^{-1}([0,1)) \cap \tilde{f}^{-1}([0,1)).$
- For $\beta < \gamma$, $Z_{\beta}^{\gamma+1} = Z_{\beta}^{\gamma} \cap f_{\gamma}^{-1}(\{1\})$, and $Z_{\gamma+1}^{\gamma+1} = \bigcap \{f^{-1}([0,1)) : f \in F \cap M_{\gamma+1}\}.$

Claim: At any successful stage γ , the family $\{Z_{\beta}^{\gamma} : \beta < \gamma\}$ is discrete.

 $\triangleright \mathcal{B}$ is a π -base for $A \subseteq X$ if every neighbourhood of A contains some member of \mathcal{B} .

 $\triangleright \mathcal{B}$ is a π -base for $A \subseteq X$ if every neighbourhood of A contains some member of \mathcal{B} .

▷ The π -character of $A \subseteq X$ is $\pi\chi(A, X) := \min\{|\mathcal{B}| : \mathcal{B} \text{ is a } \pi\text{-base for } A\}$.

 $\triangleright \mathcal{B}$ is a π -base for $A \subseteq X$ if every neighbourhood of A contains some member of \mathcal{B} .

▷ The π -character of $A \subseteq X$ is $\pi\chi(A, X) := \min\{|B| : B \text{ is a } \pi\text{-base for } A\}$.

 $\rightarrow \pi \chi(x, X) = \pi \chi(\{x\}, X)$

 $\triangleright \mathcal{B}$ is a π -base for $A \subseteq X$ if every neighbourhood of A contains some member of \mathcal{B} .

▷ The π -character of $A \subseteq X$ is $\pi\chi(A, X) := \min\{|B| : B \text{ is a } \pi\text{-base for } A\}$.

 $\rightarrow \pi \chi(x, X) = \pi \chi(\{x\}, X)$

 $\rightarrow A \subseteq X$ has non-empty interior then $\pi \chi(A, X) = 1$.

 $\triangleright X$ is **discretely selective** if for any sequence $\{U_n : n \in \omega\}$ of open sets there are $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed discrete.

 $\triangleright X$ is **discretely selective** if for any sequence $\{U_n : n \in \omega\}$ of open sets there are $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed discrete.

 \rightarrow discrete sp \implies discretely selective \implies disjoint sp.

▷ X is **discretely selective** if for any sequence $\{U_n : n \in \omega\}$ of open sets there are $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed discrete.

 \rightarrow discrete sp \implies discretely selective \implies disjoint sp.

 \rightarrow If X is a space for which $\pi\chi(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property.

 $\triangleright X$ is **discretely selective** if for any sequence $\{U_n : n \in \omega\}$ of open sets there are $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed discrete.

 \rightarrow discrete sp \implies discretely selective \implies disjoint sp.

 \rightarrow If X is a space for which $\pi\chi(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property.

 \rightarrow If X is a discretely selective space and $K \subseteq X$ is a compact set with empty interior, then $\pi \chi(K, X) > \omega$.

 $\triangleright X$ is **discretely selective** if for any sequence $\{U_n : n \in \omega\}$ of open sets there are $x_n \in U_n$ so that $\{x_n : n \in \omega\}$ is closed discrete.

 \rightarrow discrete sp \implies discretely selective \implies disjoint sp.

 \rightarrow If X is a space for which $\pi\chi(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property.

 \rightarrow If X is a discretely selective space and $K \subseteq X$ is a compact set with empty interior, then $\pi \chi(K, X) > \omega$.

 \rightarrow If X is a discretely selective space with a disjoint shrinking property, then $\pi\chi(K,X) > \omega$ for any compact set $K \subseteq X$.

 \rightarrow If X is a discrete shrinking property, then $\pi\chi(K, X) > \omega$ for any compact set $K \subseteq X$.

 \rightarrow If X is a discrete shrinking property, then $\pi\chi(K,X) > \omega$ for any compact set $K \subseteq X$.

 \rightarrow If X is a space for which $\pi_{\chi}(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property.

 \rightarrow If X is a discrete shrinking property, then $\pi\chi(K,X) > \omega$ for any compact set $K \subseteq X$.

 \rightarrow If X is a space for which $\pi_{\chi}(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property.

 \rightarrow If X is a compact space for which $\pi_{\chi}(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property and cannot be discretely selective.

 \rightarrow If X is a discrete shrinking property, then $\pi\chi(K,X) > \omega$ for any compact set $K \subseteq X$.

 \rightarrow If X is a space for which $\pi_{\chi}(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property.

 \rightarrow If X is a compact space for which $\pi_{\chi}(x, X) > \omega$ for all $x \in X$, then X has the disjoint shrinking property and cannot be discretely selective.

 \rightarrow A σ -compact space X has the discrete shrinking property if and only if $\pi\chi(K,X) > \omega$ for any compact subspace $K \subseteq X$.

Proof (By contradiction):

1. Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses.

- 1. Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses.
- 2. Choose $y_0 \in Y$ and $W_0 \in \mathcal{N}(y_0)$ so that $\overline{W_0}$ contains no U_n .

- 1. Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses.
- 2. Choose $y_0 \in Y$ and $W_0 \in \mathcal{N}(y_0)$ so that $\overline{W_0}$ contains no U_n .
- 3. Given $\{y_{\xi} \in Y, W_{\xi} \in \mathcal{N}(y_{\xi}) : \xi < \alpha\}$ so that no finite union covers infinitely many U_n 's, construct y_{α} and W_{α} .

- 1. Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses.
- 2. Choose $y_0 \in Y$ and $W_0 \in \mathcal{N}(y_0)$ so that $\overline{W_0}$ contains no U_n .
- 3. Given $\{y_{\xi} \in Y, W_{\xi} \in \mathcal{N}(y_{\xi}) : \xi < \alpha\}$ so that no finite union covers infinitely many U_n 's, construct y_{α} and W_{α} .
- 4. Find $S_{\alpha} = \{x_n \in U_n : n \in \omega\}$ almost disjoint from every W_{ξ} , $\xi < \alpha$.

- 1. Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses.
- 2. Choose $y_0 \in Y$ and $W_0 \in \mathcal{N}(y_0)$ so that $\overline{W_0}$ contains no U_n .
- 3. Given $\{y_{\xi} \in Y, W_{\xi} \in \mathcal{N}(y_{\xi}) : \xi < \alpha\}$ so that no finite union covers infinitely many U_n 's, construct y_{α} and W_{α} .
- 4. Find $S_{\alpha} = \{x_n \in U_n : n \in \omega\}$ almost disjoint from every W_{ξ} , $\xi < \alpha$.
- 5. (assumption X is not ds) let $y_{\alpha} \in Y$ limit of S_{α} .

- 1. Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses.
- 2. Choose $y_0 \in Y$ and $W_0 \in \mathcal{N}(y_0)$ so that $\overline{W_0}$ contains no U_n .
- 3. Given $\{y_{\xi} \in Y, W_{\xi} \in \mathcal{N}(y_{\xi}) : \xi < \alpha\}$ so that no finite union covers infinitely many U_n 's, construct y_{α} and W_{α} .
- 4. Find $S_{\alpha} = \{x_n \in U_n : n \in \omega\}$ almost disjoint from every W_{ξ} , $\xi < \alpha$.
- 5. (assumption X is not ds) let $y_{\alpha} \in Y$ limit of S_{α} .
- 6. $\{U_n \setminus \bigcup_{i \leq n} \overline{W_n} : n \in \omega\}$ is not a π -base for $y_{\alpha}...$ we can get W_{α} .

- 1. Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses.
- 2. Choose $y_0 \in Y$ and $W_0 \in \mathcal{N}(y_0)$ so that $\overline{W_0}$ contains no U_n .
- 3. Given $\{y_{\xi} \in Y, W_{\xi} \in \mathcal{N}(y_{\xi}) : \xi < \alpha\}$ so that no finite union covers infinitely many U_n 's, construct y_{α} and W_{α} .
- 4. Find $S_{\alpha} = \{x_n \in U_n : n \in \omega\}$ almost disjoint from every $W_{\xi}, \xi < \alpha$.
- 5. (assumption X is not ds) let $y_{\alpha} \in Y$ limit of S_{α} .
- 6. $\{U_n \setminus \bigcup_{i \leq n} \overline{W_n} : n \in \omega\}$ is not a π -base for y_{α} ... we can get W_{α} .
- 7. $\{y_{\alpha} : \alpha < \omega_1\}$ (is Lindelof) has open cover $\{W_{\alpha} : \alpha < \omega_1\}$ with no countable subcover: if $\{W_{\xi} : \xi < \alpha\}$ was a cover, then y_{α} is in W_{ξ} for some $\xi < \alpha$ which is not possible since S_{α} is almost disjoint from W_{ξ} .

Lindelof case?

 \rightarrow Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses. (Y is closed hence Lindelof)

 \rightarrow Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses. (Y is closed hence Lindelof)

 \rightarrow Lindelof + Tychonoff \implies normal.

 \rightarrow Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses. (Y is closed hence Lindelof)

- \rightarrow Lindelof + Tychonoff \implies normal.
- \rightarrow Normal + pseudocompact \implies countably compact.

 \rightarrow Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses. (Y is closed hence Lindelof)

- \rightarrow Lindelof + Tychonoff \implies normal.
- \rightarrow Normal + pseudocompact \implies countably compact.
- \rightarrow Countably compact + Lindelof \implies compact.

 \rightarrow Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses. (Y is closed hence Lindelof)

- \rightarrow Lindelof + Tychonoff \implies normal.
- \rightarrow Normal + pseudocompact \implies countably compact.
- \rightarrow Countably compact + Lindelof \implies compact.

If Y is pseudocompact, it is compact. Then use $\pi\chi(Y) > \omega$ to get a closed discrete sequence with $x_n \in U_n$.

 \rightarrow Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses. (Y is closed hence Lindelof)

- \rightarrow Lindelof + Tychonoff \implies normal.
- \rightarrow Normal + pseudocompact \implies countably compact.
- \rightarrow Countably compact + Lindelof \implies compact.

If Y is pseudocompact, it is compact. Then use $\pi\chi(Y) > \omega$ to get a closed discrete sequence with $x_n \in U_n$.

If Y is not pseudocompact, fix a continuous $f: Y \to [0, \infty)$ that diverges to infinity. By normality, $f: X \to [0, \infty)$

 \rightarrow Pairwise disjoint $\{U_n : n \in \omega\}$ and Y its set of non-locally finite witnesses. (Y is closed hence Lindelof)

- \rightarrow Lindelof + Tychonoff \implies normal.
- \rightarrow Normal + pseudocompact \implies countably compact.
- \rightarrow Countably compact + Lindelof \implies compact.

If Y is pseudocompact, it is compact. Then use $\pi\chi(Y) > \omega$ to get a closed discrete sequence with $x_n \in U_n$.

If Y is not pseudocompact, fix a continuous $f: Y \to [0, \infty)$ that diverges to infinity. By normality, $f: X \to [0, \infty)$

There are lots of partial sequences that are closed discrete. How can we get a full one?