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Outline of the talk

1. Background: quantales, the category Sup(Q) and module
theory over Sup.

2. Q-enriched topological spaces. Examples.
3. Lower separation axioms.
4. (Weak) regularity and the principle of continuous extension.
5. Example: the interval topology on projective Q-modules in Sup.
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Background

• Sup will denote the category of complete lattices and
join-preserving maps.

• Sup is a monoidal closed category.
• Semigroups (monoids) in Sup are known as (unital) quantales.
• Unital quantales can also be seen as small, complete, thin,

skeletal and monoidal closed categories.
• Explicitly, a unital quantale Q = (Q, ∗, e) is a complete lattice Q

together with an associative operation ∗ : Q×Q→ Q which
preserves joins in each variable separately, and such that e is
the unit w.r.t. this operation.

• Unless otherwise stated, Q will denote a (not necessarily
commutative) unital quantale and e will denote the unit.

• A quantale homomorphism is a map which preserves arbitrary
joins and the quantale operation. A strong homomorphism
additionally preserves the top.
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An element δ of a quantale Q is said to be

• dualizing if

δ ↙ (a↘ δ) = a = (δ ↙ a)↘ δ, ∀a ∈ Q,

• cyclic if
a↘ δ = δ ↙ a, ∀a ∈ Q.

A quantale is Girard if it has a cyclic and dualizing element.

A quantale is integral if e = >.

In an integral quantale, any dualizing element must coincide with ⊥.

Given a quantale Q, we denote by Qop the opposite quantale with
multiplication

x ∗op y := y ∗ x.
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Background

A Q-enriched category is a pair (X,p) where X is a set and
p : X × X → Q is a map satisfying.

1. e ≤ p(x, x) for all x ∈ X,
2. p(y, z) ∗ p(x, y) ≤ p(x, z) for all x, y, z ∈ X.

A Q-functor f : (X,p)→ (Y,q) is a map f : x→ Y such that
p(x, y) ≤ q(f (x)), f (y)) for all x, y ∈ X.

The category of Q-enriched categories and Q-functors between
them will be denoted by Cat(Q).

Furthermore, consider the category Sup(Q) of cocomplete,
separated Q-enriched categories and cocontinuous Q-functors
between them.

Recall that a Q-enriched category is cocomplete if and only if the
Q-enriched Yoneda embedding y(X,p) : (X,p)→ P(X,p) has a left
adjoint Q-functor Sup(X,p) : P(X,p)→ (X,p). The relation
Sup(X,p)(f ) = Colimf

(1X) holds.
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Background: right Q-modules

A right Q-module in Sup is a complete lattice M provided with a
right action M⊗Q

�−→ M in the monoidal closed category Sup. Due
to the universal property of the tensor product, every right action on
M can be identified with a map M×Q

�−→ M, which is join-preserving
in each variable separately and satisfies the following axioms:

m� e = m and (m� α)� β = m� (α ∗ β), m ∈ M, α, β ∈ Q.

A Q-linear map f : (M,�)→ (N,�′) is a join preserving map such
that f (m� α) = f (m)�′ α for all m ∈ M and α ∈ Q.

Theorem
There is an isomorphism of categories

Modr(Q) ∼= Sup(Qop),

where Modr(Q) denotes the category of right Q-modules and
Q-linear maps.
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More precisely, given a right Q-module (M,�), there is a unique
Qop-category structure (M,p) such that (M,p) is skeletal,
cocomplete, the underlying preorder associated to (M,p) is the
original order from M and satisfies

p(x � α, y) = α↘ p(x, y) ∀x, y ∈ M, α ∈ Q.

In this situation, the relation

Sup(M,p)(f ) =
∨

x∈M
x � f (x)

holds for any contravariant Qop-presheaf f .
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Background: The free right Q-module

Let X be a set and P(X) be the power set of X — i.e. the free complete
lattice on X. Now, let QX be provided with the pointwise order
induced by the order on Q and with the right multiplication on QX

as right action — i.e.

(f ∗ α)(x) = f (x) ∗ α, f ∈ QX, α ∈ Q, x ∈ X.

Then there exists a right Q-module isomorphism QX ∼= P(X)⊗Q.
Since P(X)⊗Q is the free right Q-module on P(X) and the power set
functor is left adjoint to the forgetful functor Sup→ Set, we
conclude that (QX, ∗) is the free right Q-module on X. The
corresponding Qop-enriched category structure d of

(
QX, ∗

)
attains

the form:

d(f1, f2) =
∧

x∈X
f1(x)↘ f2(x), f1, f2 ∈ QX.
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Because Sup is self-dual and QX is also a left Q-module w.r.t. the
left multiplication — i.e.

(α ∗ f )(x) = α ∗ f (x), f ∈ QX, α ∈ Q, x ∈ X,

there is right action �op on the dual lattice of QX is determined by:

(f �op α)(x) = α↘ f (x), f ∈ QX, α ∈ Q, x ∈ X.

Now let ≤op be the dual order of the pointwise order on QX . Then
the associated Qop-enriched category d† of ((QX,≤op),�op) attains
the form:

d†(f1, f2) =
∧

x∈X
f1(x)↙ f2(x), f1, f2 ∈ QX.
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Q-enriched topologies

We fix an isotone binary operation � on Q. Then (Q, �) is called a
quasi-magma on Q if it satisfies the following condition for all
α, β, γ ∈ Q:

α ∗ (β � γ) ≤ (α ∗ β) � γ and (α � β) ∗ γ ≤ α � (β ∗ γ).

Example

• � = ∗ is always a quasi-magma.
• If Q is integral, then � = ∧ is a quasi-magma.

A Q-enriched topology on a set X is a right Q-submodule T of the
free right Q-module QX satisfying the following axioms:

1. > is an element of T .
2. If f1, f2 ∈ T , then f1 � f2 ∈ T , (where f1 � f2 is defined pointwisely).
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The pair (X, T ) is called a Q-enriched topological space and each
f ∈ T is an open Q-presheaf on X.

Let (X, TX) and (Y, TY) be Q-topological spaces. A map X ϕ−→ Y is
Q-continuous if f ◦ ϕ ∈ TX for all f ∈ TY .

Note that if S is a subbase of TY then ϕ is Q-continuous if and only
if f ◦ ϕ ∈ TX for all f ∈ S .

Obviously, Q-topological spaces and Q-continuous maps form a
category Top(Q, �) which is topological over Set.
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Why study Q-enriched topologies?

Many-valued topology.

1. Probabilistic topologies. When Q is a complete MV-algebra and
� = ∧, probabilistic topologies associated to probabilistic
metric spaces are Q-topological spaces.

U. Höhle,
Probabilistic topologies induced by L-fuzzy uniformities,
Manuscripta Math. 38, 289–323 (1982).

2. Goguen’s Q-spaces. When � = ∗, Goguen’s Q-spaces with all
constant maps to be assumed open are also Q-topological
spaces.

J.A. Goguen,
The fuzzy Tychono� theorem,
J. Math. Anal. Appl. 43, 734–742 (1973).

3. Others: When Q = ([0, 1], ∗Ł) and � is the arithmetic mean, we
obtain topologies on spaces of Borel probability measures...
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Why study Q-enriched topologies?

Quantale-valued topological spaces & monoidal topology.

H. Lai, and W. Tholen,
Quantale-valued topological spaces via closure and
convergence,
Topol. Appl. 230, 599–620 (2017)

A Q-valued topological space is a pair (X, c) where X is a set and
c : P(X)→ QX such that for all A,B ⊆ X and x ∈ X, the following
conditions hold:

• c(∅)(x) = ⊥,
• x ∈ A implies e ≤ c(A)(x),
• c(A)(x) ∨ c(B)(x) = c(A ∪ B)(x),
• (
∧

y∈B c(A)(y)) ∗ c(B)(x) ≤ c(A)(x).

Morphisms (X, c)→ (Y, c′) are contractive maps X → Y.
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If the underlying lattice of Q is completely distributive, then the
category of Q-valued topological spaces is isomorphic to the
category of lax algebras of the lax extension of the ultrafilter monad
into the category of Q-valued relations.

Proposition
Let Q be an integral quantale with a dualizing element whose
underlying lattice is completely distributive, and set � = ∧. Then
the category of Q-valued topological spaces is a coreflective
subcategory of the category of Q-enriched topological spaces.
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For the case of MV-algebras, Q-valued spaces correspond precisely
to a well-understood full subcategory of Top(Q, �):

Proposition
Let Q be a complete MV-algebra whose underlying lattice is
completely distributive. Then, the category (β,Q)−Alg is
equivalent to the full subcategory of Top(Q,∧) consisting of
Q-enriched topological spaces that satisfy

α→ f ∈ T , for every f ∈ T , α ∈ Q. (†)

Q-enriched topologies satisfying (†) have particularly simple
expressions:

T = { f ∈ QX | f =
∨

b(x)=e
d(b, f ) }.
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Unfortunately, this does not cover the case Q = [0,∞] (the Lawvere
quantale). However, it can be shown that approach spaces are also
Q-enriched topological spaces when Q = ([0, 1], ∗Ł) and � = ∧. For
more details, see

J. Gutiérrez García, U. Höhle, T. Kubiak,
Basic concepts of quantale-enriched topologies,
Appl. Categ. Struct. 29 (2021), 983–1003.
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Why study Q-enriched topologies?

The topologization of ideal lattices of noncommutative C∗-algebras

If A is a commutative C∗-algebra, then the set R(A) of right-sided
(i.e. two-sided) closed ideals of A is a spatial frame which is
isomorphic to the Gelfand topology on the set P(A) of maximal
(right) ideals of A.

Suppose now A is a non-commutative C∗-algebra and denote again
by R(A) the set of right-sided ideals of A. Then R(A) is clearly closed
under intersections, and it is easy to show that the join is the
closure of the linear hull of the union. Moreover, we have the ideal
multiplication

I ? J = cl(lin. hull({x · y | x ∈ I, y ∈ J}))

which preserves arbitrary joins in each variable.
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Then, (R(A), ?) is a quantale which is:

• non-commutative,
• non-unital
• idempotent,
• right-sided (i.e. α ∗ > ≤ α for all α ∈ Q),
• every maximal element is prime

(β ∗ γ ≤ α =⇒ β ∗ > ≤ α or > ∗ γ ≤ α),
• every element is a meet of maximal elements, and so it is

spatial.

Question: can we find a (Q-enriched) topological space (P(A), T )
and a quantale isomorphism T ∼= R(A)?

In what follows we choose � = ∗. Then, since T must be a
subquantale of QP(A) (closed additionally under >), it follows that Q
must be non-commutative (and unital!). Hence we need at least 4
elements.
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It is natural to consider the idempotent and right-sided quantale Cr
4

on the 4-chain {⊥ < a < e < >} given by the multiplication table

∗ ⊥ a e >
⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a a a
e ⊥ a e >
> ⊥ > > >

Its subquantale Cr
3 := {⊥ < a < >} is the unique non-commutative,

idempotent and right-sided quantale with three elements.

It is well-known that if Q is a right-sided and idempotent quantale,
then prime elements p ∈ Q correspond to a strong quantale
homomorphisms hp : Q −→ Cr

3 such that p =
∨
{ x ∈ Q | hp(x) ≤ a }.

If in Q spatial, then we can identify every x ∈ Q with a map
Ax : Prime(Q)→ Cr

3 given by Ax(p) = hp(x).
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Then, the set
T := {AI : P(A)→ Cr

4 | I ∈ R(A)}

is in bijection with R(A). It is easy to verify that the relations∨
i∈A

AIi = A∨
i∈I Ii

, AI ∗ AJ = AI?J, AA = >,

AI ∗ α = AI

hold for any {Ii}i∈I ⊆ R(A), I, J ∈ R(A), α ∈ Cr
4. Hence T is a

Cr
4-enriched topology on P(A) isomorphic to R(A).

Remark
If A is commutative, then the change of base determined by 2 ↪→ Cr

4
yields the traditional Gelfand topology.

J. Gutiérrez García, and U. Höhle,
Right algebras in Sup and the topological representation of
semi-unital and semi-integral quantales, revisited,
Mathematica Slovaca 74 (2) (2024), 261–280
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Interior and adherence operators

A Q-interior operator on a set X is a Q-coclosure operator I on
(QX,d) satisfying the following additional properties:

(Int1) I(>) = >,
(Int2) If f1, f2 ∈ QX , then I(f1) � I(f2) ≤ I(f1 � f2).

Since Q-coclosure operators on (QX,d) and right Q-submodules of
(QX, ∗) are equivalent concepts, it is easily seen that every
Q-interior operator I on X can be identified with a Q-enriched
topology T on X and vice versa.

Every Q-interior operator I on X induces a Q-coclosure operator AI
on
(
QX,d†

)
. It is given by the expression

AI(f )(x) =
∧

g∈QX

(
(
∨

y∈X
(f (y) ∗ g(y)))↙ I(g)(x)

)
, x ∈ X, f ∈ QX.
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Lower separation

Definition

A Q-enriched topological space (X, T ) is said to be

1. T0, if for each x, y ∈ X with x 6= y there exists some f ∈ T such
that f (x) 6≤ f (y) or f (y) 6≤ f (x).

2. T1, if for each x, y ∈ X with x 6= y there exist f1, f2 ∈ T with
f1(x) 6≤ f1(y) and f2 ∈ T with f2(y) 6≤ f2(x).

Let Q = (Q, ∗, e, ′) be an involutive quantale. The specialization
Qop-enriched category ps of a Q-topological space (X, T ) is
determined by

ps(x, y) = AI(1{y})(x)′ =
∧

f∈T
f ′(x)↘ f ′(y), x, y ∈ X.

H. Lai, D. Zhang,
Fuzzy preorder and fuzzy topology,
Fuzzy Sets and Systems (14) 157 (2006), 1865–1885. 22/37



1. (X, T ) is T0 if and only if the specialization Qop-enriched
category is skeletal.

2. (X, T ) is T1 if and only if the specialization Qop-enriched
category is discrete.
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The Hausdor� axiom

A Q-enriched topological space is Hausdor� (or T2) if for each
x, y ∈ X with x 6= y there exist f1, f2 ∈ T with

f1(x) � f2(y) 6≤
∨

z∈X
(f1(z) � f2(z)) or f2(y) � f1(x) 6≤

∨
z∈X

(f2(z) � f1(z)).

We say that a subset A of X is dense in (X, T ) if every x ∈ X is an
adherent point of 1A — i.e. if e ≤ AI(1A).

Proposition
Let (X, TX) and (Y, TY) be Q-enriched topological spaces and A be a
dense subset in (X, TX). If (Y, TY) is Hausdor� separated and the
maps (X, TX)

ψ,ϕ−−−→ (Y, TY) are Q-continuous such that their
restrictions to A coincide, then ψ = ϕ.
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The regularity axiom

Let (X, T ) be a Q-enriched topological space. For every open
Q-presheaf f ∈ T consider the Q-presheaf Ff : T → Q given by

Ff (g) = d(A(g), f ).

We say that (X, T ) is

• regular if for any open Q-presheaf f ∈ T ,

f = Sup(T ,d)(Ff ).

• weakly regular if the set{
f ∈ T | f = Sup(T ,d)(Ff )

}
is a subbase for T .

When Q = 2, regularity and weak regularity coincide with the usual
separation axiom.
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More generally,

Proposition

If Q is a frame (i.e. ∗ = ∧) and � = ∧, then regularity and weak
regularity are equivalent.

The next example presents a weakly regular Q-topological space
being not regular.

Example

On the 3-chain C3 = {⊥,a,>} consider the 3-valued MV-algebra
Q = (C3, ∗) and � = ∗. Let T be the Q-topology on C3 generated by
the subbase S = { idC3 , idC3 → ⊥}. It is not di�cult to show that
(C3, T ) is weakly regular but not regular. Since (Q,� = ∗) is a
projective right Q-module and T coincides with the interval
topology on C3, we will extend this situation later.
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For the remaining part of this talk we will work in the framework of
the quasi-magma (Q, ∗) — i.e. � = ∗.

Proposition

Let Q be quantale with a dualizing element. Then in any weakly
regular Q-enriched topological space,

T0 ⇐⇒ T1 ⇐⇒ T2.
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The principle of continuous extension

A classical result from

N. Bourbaki, J. Dieudonné,
Note de tératopologie. II,
Revue Scientifique (Revue Rose) 77 (1939), 180–181.

provides conditions for a continuous function defined in a dense
subspace of a regular space to admit a unique continuous extension.

In order to obtain a Q-enriched generalization, we first develop a
few concepts regarding the convergence theory of Q-enriched
spaces.

A Q-enriched filter on a set X is a covariant Q-presheaf ω on (QX,d)
satisfying the following properties for all f1, f2 ∈ QX :

1. ω(>) = >,
2. ω(f ) � ω(g) ≤ ω(f � g),
3. ω(f ) ≤

∨
f (X). 28/37



Given a Q-enriched topological space (X, T ) and x ∈ X, the covariant
Q-presheaf νx on (QX,d) given by

νx(f ) = I(f )(x), f ∈ QX

is a Q-filter, namely the Q-neighborhood filter at x.

An element x ∈ X is called a limit point of a Q-filter ω in (X, T ) if
νx(f ) ≤ ω(f ) for all f ∈ QX .

Remark
In a Hausdor� Q-enriched topological space limit points are
unique.

A map (X, TX)
ϕ−→ (Y, TY) between Q-enriched topological spaces is

Q-continuous if and only if for each x ∈ X and each Q-filter ω on X
converging to x the image Q-filter ϕ(ω) converges to ϕ(x), where(

ϕ(ω)
)
(g) = ω(g ◦ ϕ), g ∈ QY .
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Every Q-presheaf f on A can be identified with the Q-presheaf fX on
X determined by:

fX(x) =
{

f (x), if x ∈ A,
>, if x 6∈ A,

x ∈ X.

Further, let ω be a Q-filter on X. The trace of ω on A is the covariant
Q-presheaf ωA on

(
QA,d

)
defined by:

ωA(f ) := ω(fX), f ∈ QA.

It is not di�cult to show that ωA is a filter on A if and only if A is
dense.
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Theorem (Principle of Q-continuous extension)

Let Q be quantale with a dualizing element, (X, TX) and (Y, TY) be
Q-topological spaces, A be a dense subset in (X, TX) and ι : A ↪→ X
be the inclusion map. Further, let (Y, TY) be T0 and weakly regular
and ψ : A→ Y be a Q-continuous map w.r.t. the initial Q-topology
on A induced by TX . Then the following assertions are equivalent:

1. ψ has a unique Q-continuous extension to X — i.e. there exists a
unique Q-continuous map X ϕ−→ Y making the following
diagram commutative:

A X

Y

ι

ψ
ϕ

2. There exists a map X ϕ−→ Y such that for all x ∈ X the point ϕ(x)
is a limit point of ψ

(
(νx)A

)
, where ψ

(
(νx)A

)
denotes the image of

the trace of the Q-neighborhood filter νx on A under ψ.
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The proof of this result relies essentially on the assumption � = ∗.
We therefore propose the following:

Open Problem. Let Q be an integral quantale. Does the principle of
Q-continuous extension hold in the case of the quasi-magma
(Q,∧)?

B. Banaschewski,
Extension by continuity in pointfree topology,
Appl. Categ. Struct.8 (2000), 475–486.
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Projective right Q-modules and the interval topology

I. Stubbe,
Towards “dynamic domains”. Totally continuous cocomplete
categories,
Theoret. Comput. Sci. 373, 142–160 (2007).

A cocomplete Q-enriched category (X,p) is said to be
(constructively) Q-enriched completely distributive if the left
adjoint of the Yoneda embedding y(X,p) : (X,p)→ P(X,p), that is
Sup(X,p) : P(X,p)→ (X,p), has a further left adjoint
C(X,p) : (X,p)→ P(X,p).

Proposition
A cocomplete Q-enriched category (X,p) is Q-enriched completely
distributive if and only if it is a projective object in Sup(Q).
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Example

For any (unital) quantale Q, its right multiplication determines a
right Q-module structure on Q which is projective.

Let Q be a commutative Girard quantale and M be a projective
Q-module in Sup with associated Qop- enriched category (M,p).

Choose a dualizing element δ ∈ Q and define the interval
Q-topology TI on M generated by the following subbase:

{p( ,m)↘ δ) | m ∈ M } ∪ {p(n, )↘ δ | n ∈ M }.

Theorem
Let Q be a commutative Girard quantale and M be a projective
Q-module in Sup. Then the interval topology on M is a T0 and
weakly regular Q-enriched topology.
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Future directions

• Develop the theory of compactness by using flat Q-enriched
ideals (compact Hausdor� Q-enriched spaces, Q-enriched
Hofmann–Mislove Theorem, etc.).

S. Vickers,
Localic completion of generalized metric spaces. I,
Theory Appl. Categ. 14 (2005) 328–356.
J. Gutiérrez García, U. Höhle, and T. Kubiak,
A theory of quantale-enriched dcpos and their
topologization,
Fuzzy Sets and Systems 444 (2022) 103–130.

• Comparison of distinct separation axioms with those occurring
in monoidal topology.
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