Lelek fan as an inverse limit of Cantor fans

Iztok Banič

Joint work with Goran Erceg, Judy Kennedy, Chris Mouron and Van Nall

A continuum is a non-empty compact connected metric space.

A continuum is a non-empty compact connected metric space.

A subcontinuum is a subspace of a continuum, which is itself a continuum.

Let X be a continuum. We say that X is a Cantor fan, if X is homeomorphic to the continuum $\bigcup_{c\in C}A_c$, where $C\subseteq [0,1]$ is a Cantor set and for each $c\in C$, A_c is the convex segment in the plane from (0,0) to (c,-1).

Figure: The Cantor fan

Let X be a Cantor fan and let Y be a subcontinuum of X. A point $x \in Y$ is called an end-point of the continuum Y, if for every arc A in Y that contains x, x is an end-point of A.

The set of all end-points of Y will be denoted by E(Y).

Let X be a Cantor fan and let Y be a subcontinuum of X. We say that Y is a Lelek fan, if Cl(E(Y)) = Y.

Figure: The Lelek fan

Suppose X is a compact metric space. If $f : X \to X$ is a continuous function, the inverse limit space generated by f is the subspace

$$\underset{\leftarrow}{\lim}(X,f) = \left\{ (x_1, x_2, x_3, \ldots) \in \prod_{i=1}^{\infty} X \mid \text{ for each } i, x_i = f(x_{i+1}) \right\}$$

of the topological product $\prod_{i=1}^{\infty} X$.

Let (X, f) be a dynamical system. We say that (X, f) is transitive, if for all non-empty open sets U and V in X, there is a non-negative integer n such that $f^n(U) \cap V \neq \emptyset$.

Let X be a non-empty compact metric space and let $F \subseteq X \times X$ be a relation on X. If F is closed in $X \times X$, then we say that F is a closed relation on X.

Figure: A closed relation F on I = [0, 1]

Let X be a non-empty compact metric space and let F be a closed relation on X. Then we call

$$X_F^+ = \left\{ (x_1, x_2, x_3, \ldots) \in \prod_{i=1}^{\infty} X \mid \text{ for each } i, (x_i, x_{i+1}) \in F \right\}$$

the Mahavier product of F, and we call

$$X_{\mathsf{F}} = \left\{ (\dots, x_{-1}, x_0; x_1, x_2, \dots) \in \prod_{i=-\infty}^{\infty} X \mid \text{ for each } i, (x_i, x_{i+1}) \in \mathsf{F} \right\}$$

the two-sided Mahavier product of F.

 X^+_F and X_F are subspaces of the topological products $\prod_{i=1}^\infty X$ and $\prod_{i=-\infty}^\infty X,$ respectively.

Let X be a non-empty compact metric space and let F be a closed relation on X.

The function $\sigma_{\rm F}^+: {\rm X}_{\rm F}^+ \rightarrow {\rm X}_{\rm F}^+$, defined by

$$\sigma_{\mathsf{F}}^{+}(\mathsf{x}_{1},\mathsf{x}_{2},\mathsf{x}_{3},\mathsf{x}_{4},\ldots) = (\mathsf{x}_{2},\mathsf{x}_{3},\mathsf{x}_{4},\ldots)$$

for each $(x_1, x_2, x_3, x_4, \ldots) \in X_F^+$, is called the shift map on X_F^+ .

Let X be a compact metric space and let F be a closed relation on X. Then

 $\lim_{K \to \infty} (X_F^+, \sigma_F^+)$ is homeomorphic to X_F .

Theorem

There is a transitive mapping f on a Cantor fan X such that $\lim(X, f)$ is a Lelek fan.

PROOF: We use I to denote I = [0, 1] and we use H to denote

$$\mathsf{H} = \{ (x, \sqrt{x}) \mid x \in [0, 1] \} \cup \{ (x, \frac{1}{2}x^3) \mid x \in [0, 1] \}.$$

Figure: The closed relation H on I = [0, 1]

Figure: The closed relation H on I = [0, 1]

Then prove: I_{H}^{+} is a Cantor fan

Figure: The closed relation H on I = [0, 1]

Then prove: I_{H}^{+} is a Cantor fan and I_{H} is a Lelek fan.

Figure: The closed relation H on I = [0, 1]

Then prove: I_H⁺ is a Cantor fan and I_H is a Lelek fan. Also, $\sigma_{\rm H}^+: {\rm I}_{\rm H}^+ \to {\rm I}_{\rm H}^+$ is transitive.

Figure: The closed relation H on I = [0, 1]

Then prove: I_H⁺ is a Cantor fan and I_H is a Lelek fan. Also, $\sigma_{\rm H}^+: {\rm I}_{\rm H}^+ \to {\rm I}_{\rm H}^+$ is transitive.

 I_H is homeomorphic to $\varprojlim(I_H^+, \sigma_H^+)$.

There is a transitive mapping f on a Cantor fan X such that $\lim_{t \to \infty} (X, f)$ is a Lelek fan.

There is a transitive mapping f on a Cantor fan X such that $\lim_{t \to \infty} (X, f)$ is a Lelek fan.

Theorem (I.B., G. Erceg, J. Kennedy, C. Mouron, V. Nall)

There is a transitive mapping f on a Cantor fan X such that $\lim_{\to} (X, f)$ is a Cantor fan.

There is a transitive mapping f on a Cantor fan X such that $\lim_{t \to \infty} (X, f)$ is a Lelek fan.

Theorem (I.B., G. Erceg, J. Kennedy, C. Mouron, V. Nall)

There is a transitive mapping f on a Cantor fan X such that $\lim_{\to} (X, f)$ is a Cantor fan.

Theorem (I.B., G. Erceg, J. Kennedy)

There is a transitive mapping f on a Lelek fan X such that $\varprojlim(X,f)$ is a Lelek fan.

There is a transitive mapping f on a Cantor fan X such that $\lim_{t \to \infty} (X, f)$ is a Lelek fan.

Theorem (I.B., G. Erceg, J. Kennedy, C. Mouron, V. Nall)

There is a transitive mapping f on a Cantor fan X such that $\lim_{\to} (X, f)$ is a Cantor fan.

Theorem (I.B., G. Erceg, J. Kennedy)

There is a transitive mapping f on a Lelek fan X such that $\varprojlim(X,f)$ is a Lelek fan.

Problem

Is there a transitive mapping f on a Lelek fan X such that $\varprojlim(X,f)$ is a Cantor fan?

THANK YOU!