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Definition
A continuum is a non-empty compact connected metric space.
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Definition
A continuum is a non-empty compact connected metric space.

A subcontinuum is a subspace of a continuum, which is itself a
continuum.
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Definition
Let X be a continuum. We say that X is a Cantor fan, if X is
homeomorphic to the continuum


c∈C Ac , where C ⊆ [0,1] is a

Cantor set and for each c ∈ C, Ac is the convex segment in the
plane from (0,0) to (c,−1).

Figure: The Cantor fan
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Definition
Let X be a Cantor fan and let Y be a subcontinuum of X. A point
x ∈ Y is called an end-point of the continuum Y, if for every arc A
in Y that contains x, x is an end-point of A.

The set of all end-points of Y will be denoted by E(Y).
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Definition
Let X be a Cantor fan and let Y be a subcontinuum of X. We say
that Y is a Lelek fan, if Cl(E(Y)) = Y.

Figure: The Lelek fan
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Definition
Suppose X is a compact metric space. If f : X → X is a continuous
function, the inverse limit space generated by f is the subspace

lim←−−(X , f) =

(x1,x2,x3, . . .) ∈

∞

i=1

X | for each i,xi = f(xi+1)


of the topological product
∞

i=1 X.
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Definition

Let (X , f) be a dynamical system. We say that (X , f) is transitive, if
for all non-empty open sets U and V in X, there is a non-negative
integer n such that fn(U)∩V  ∅.
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Definition
Let X be a non-empty compact metric space and let F ⊆ X ×X be
a relation on X. If F is closed in X ×X, then we say that F is a
closed relation on X.

F

Figure: A closed relation F on I = [0,1]
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Definition
Let X be a non-empty compact metric space and let F be a closed
relation on X. Then we call

X+
F =

(x1,x2,x3, . . .) ∈

∞

i=1

X | for each i,(xi ,xi+1) ∈ F


the Mahavier product of F, and we call

XF =

(. . . ,x−1,x0;x1,x2, . . .) ∈

∞

i=−∞
X | for each i,(xi ,xi+1) ∈ F



the two-sided Mahavier product of F.

X+
F and XF are subspaces of the topological products

∞
i=1 X and∞

i=−∞X, respectively.
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Definition
Let X be a non-empty compact metric space and let F be a closed
relation on X.

The function σ+F : X+
F → X+

F , defined by

σ+F (x1,x2,x3,x4, . . .) = (x2,x3,x4, . . .)

for each (x1,x2,x3,x4, . . .) ∈ X+
F , is called the shift map on X+

F .
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Theorem (I.B., G. Erceg, J. Kennedy, C. Mouron, V. Nall)

Let X be a compact metric space and let F be a closed relation on
X. Then

lim←−−(X
+
F ,σ

+
F ) is homeomorphic to XF .
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Theorem

There is a transitive mapping f on a Cantor fan X such that
lim←−−(X , f) is a Lelek fan.

PROOF: We use I to denote I = [0,1] and we use H to denote

H =


x,
√

x

| x ∈ [0,1]


∪


x,
1
2

x3

| x ∈ [0,1]


.

0
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1

1

Figure: The closed relation H on I = [0,1]
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Figure: The closed relation H on I = [0,1]

Then prove:
I+H is a Cantor fan
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Figure: The closed relation H on I = [0,1]

Then prove:
I+H is a Cantor fan and IH is a Lelek fan.
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Figure: The closed relation H on I = [0,1]

Then prove:
I+H is a Cantor fan and IH is a Lelek fan. Also, σ+H : I+H → I+H is
transitive.
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Figure: The closed relation H on I = [0,1]

Then prove:
I+H is a Cantor fan and IH is a Lelek fan. Also, σ+H : I+H → I+H is
transitive.

IH is homeomorphic to lim←−−(I
+
H ,σ

+
H ).
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Theorem (I.B., G. Erceg, J. Kennedy, C. Mouron, V. Nall)

There is a transitive mapping f on a Cantor fan X such that
lim←−−(X , f) is a Lelek fan.
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There is a transitive mapping f on a Cantor fan X such that
lim←−−(X , f) is a Cantor fan.

Theorem (I.B., G. Erceg, J. Kennedy)

There is a transitive mapping f on a Lelek fan X such that lim←−−(X , f)
is a Lelek fan.
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Theorem (I.B., G. Erceg, J. Kennedy, C. Mouron, V. Nall)

There is a transitive mapping f on a Cantor fan X such that
lim←−−(X , f) is a Lelek fan.

Theorem (I.B., G. Erceg, J. Kennedy, C. Mouron, V. Nall)

There is a transitive mapping f on a Cantor fan X such that
lim←−−(X , f) is a Cantor fan.

Theorem (I.B., G. Erceg, J. Kennedy)

There is a transitive mapping f on a Lelek fan X such that lim←−−(X , f)
is a Lelek fan.

Problem

Is there a transitive mapping f on a Lelek fan X such that lim←−−(X , f)
is a Cantor fan?
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THANK YOU!
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