Cardinal inequalities for Urysohn spaces involving variations of the almost Lindelf degree

Ivan S. Gotchev

Central Connecticut State University

38th Summer Conference on Topology and its Applications University of Coimbra, Coimbra, Portugal July 8–12, 2024

Arhangel'skii's inequality

Theorem: [Arhangel'skiĭ–1969]

If X is a Hausdorff space, then $|X| \leq 2^{\chi(X)L(X)}$.

Arhangel'skii's inequality

Theorem: [Arhangel'skiĭ–1969]

If X is a Hausdorff space, then $|X| \leq 2^{\chi(X)L(X)}$.

Pol's proof [Pol–1974] uses the so called now "closure" method, aka "Pol-Šapirovskii technique" and the following theorem:

Arhangel'skii's inequality

Theorem: [Arhangel'skiĭ–1969]

If X is a Hausdorff space, then $|X| \leq 2^{\chi(X)L(X)}$.

Pol's proof [Pol–1974] uses the so called now "closure" method, aka "Pol-Šapirovskiĭ technique" and the following theorem:

Theorem: [Pospišil–1937]

If X is a Hausdorff space, then $|X| \leq d(X)^{\chi(X)}$.

Theorem: [Arhangel'skiĭ–1971, Šapirovskiĭ–1974]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi(X)L(X)}$.

Theorem: [Arhangel'skiĭ–1971, Šapirovskiĭ–1974]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi(X)L(X)}$.

One of the early proofs uses the "closure" method (see [Hodel–1984]) and the following theorem:

Theorem: [Arhangel'skiĭ–1971, Šapirovskiĭ–1974]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi(X)L(X)}$.

One of the early proofs uses the "closure" method (see [Hodel–1984]) and the following theorem:

Theorem:

If X is a Hausdorff space, then $|X| \leq d(X)^{t(X)\psi(X)L(X)}$.

Definition: [Gryzlov-1973]

Definition: [Gryzlov–1973] The *closed pseudo-character of X* at the point x (defined only for Hausdorff spaces) is

$$\psi_c(x,X):=\min\{|\mathcal{V}|:\bigcap\{\overline{V}:V\in\mathcal{V},V\in\tau\}=\{x\}\},$$

Definition: [Gryzlov–1973] The *closed pseudo-character of X* at the point x (defined only for Hausdorff spaces) is

$$\psi_c(x,X) := \min\{|\mathcal{V}| : \bigcap\{\overline{V} : V \in \mathcal{V}, V \in \tau\} = \{x\}\},\$$

and the closed pseudo-character of X is

$$\psi_c(X) := \sup \{ \psi_c(x, X) : x \in X \}.$$

Definition: [Gryzlov–1973] The *closed pseudo-character of X* at the point x (defined only for Hausdorff spaces) is

$$\psi_c(x,X) := \min\{|\mathcal{V}| : \bigcap\{\overline{V} : V \in \mathcal{V}, V \in \tau\} = \{x\}\},\$$

and the closed pseudo-character of X is

$$\psi_c(X) := \sup \{ \psi_c(x, X) : x \in X \}.$$

Note: $\psi(X) \leq \psi_c(X)$ for every Hausdorff space X.

Theorem: [Arhangel'skiĭ–1971, Šapirovskiĭ–1974]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi(X)L(X)}$.

Theorem: [Arhangel'skiĭ–1971, Šapirovskiĭ–1974]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi(X)L(X)}$.

One could proof the above theorem using the "closure" method and the following theorems:

Theorem: [Arhangel'skiĭ–1971, Šapirovskiĭ–1974]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi(X)L(X)}$.

One could proof the above theorem using the "closure" method and the following theorems:

Theorem: [Bella and Cammaroto-1988]

If X is a Hausdorff space, then $|X| \leq d(X)^{t(X)\psi_c(X)}$.

Theorem: [Arhangel'skiĭ–1971, Šapirovskiĭ–1974]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi(X)L(X)}$.

One could proof the above theorem using the "closure" method and the following theorems:

Theorem: [Bella and Cammaroto–1988]

If X is a Hausdorff space, then $|X| \leq d(X)^{t(X)\psi_c(X)}$.

Theorem: [Juhász–1980]

If X is a Hausdorff space, then $\psi_c(X) \leq \psi(X)L(X)$.

Definition: [Willard and Dissanayake–1984]

Definition: [Willard and Dissanayake–1984] The *almost* Lindelöf degree of a space X with respect to closed sets is

Definition: [Willard and Dissanayake–1984] The *almost* Lindelöf degree of a space X with respect to closed sets is $aL_c(X) = \sup\{aL(F,X) : F \text{ is a closed subset of } X\}$

Definition: [Willard and Dissanayake–1984] The *almost* Lindelöf degree of a space X with respect to closed sets is

$$aL_c(X) = \sup\{aL(F, X) : F \text{ is a closed subset of } X\}$$

where aL(F,X) is the minimal cardinal number κ such that for every open (in X) cover $\mathcal U$ of F

Definition: [Willard and Dissanayake–1984] The *almost* Lindelöf degree of a space X with respect to closed sets is

$$aL_c(X) = \sup\{aL(F, X) : F \text{ is a closed subset of } X\}$$

where aL(F,X) is the minimal cardinal number κ such that for every open (in X) cover \mathcal{U} of F there is a subfamily $\mathcal{U}_0 \subset \mathcal{U}$

Definition: [Willard and Dissanayake–1984] The *almost* Lindelöf degree of a space X with respect to closed sets is

$$aL_c(X) = \sup\{aL(F,X) : F \text{ is a closed subset of } X\}$$

where aL(F,X) is the minimal cardinal number κ such that for every open (in X) cover \mathcal{U} of F there is a subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that $|\mathcal{U}_0| \leq \kappa$ and $F \subset \bigcup \{\overline{\mathcal{U}} : \mathcal{U} \in \mathcal{U}_0\}$.

Definition: [Willard and Dissanayake–1984] The *almost* Lindelöf degree of a space X with respect to closed sets is

$$aL_c(X) = \sup\{aL(F,X) : F \text{ is a closed subset of } X\}$$

where aL(F,X) is the minimal cardinal number κ such that for every open (in X) cover \mathcal{U} of F there is a subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that $|\mathcal{U}_0| \leq \kappa$ and $F \subset \bigcup \{\overline{U} : U \in \mathcal{U}_0\}$.

aL(X,X) is called almost Lindelöf degree of X and is denoted by aL(X).

Definition: [Willard and Dissanayake–1984] The *almost* Lindelöf degree of a space X with respect to closed sets is

$$aL_c(X) = \sup\{aL(F, X) : F \text{ is a closed subset of } X\}$$

where aL(F,X) is the minimal cardinal number κ such that for every open (in X) cover \mathcal{U} of F there is a subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that $|\mathcal{U}_0| \leq \kappa$ and $F \subset \bigcup \{\overline{U} : U \in \mathcal{U}_0\}$.

aL(X,X) is called almost Lindelöf degree of X and is denoted by aL(X).

Note: $aL(X) \le aL_c(X) \le L(X)$ for every space X.

Willard and Dissanayake's inequality

Theorem: [Willard and Dissanayake-1984]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)\pi\chi(X)aL_c(X)}$.

Willard and Dissanayake's inequality

Theorem: [Willard and Dissanayake-1984]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)\pi\chi(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Willard and Dissanayake's inequality

Theorem: [Willard and Dissanayake–1984]

If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)\pi\chi(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem: [Willard and Dissanayake–1984]

If X is a Hausdorff space, then $|X| \leq d(X)^{\pi\chi(X)\psi_c(X)}$.

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)aL_c(X)}$.

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq d(X)^{t(X)\psi_c(X)}$.

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq d(X)^{t(X)\psi_c(X)}$.

Lemma: [Hodel–2006] If X is a Urysohn space, then $\psi_c(X) \leq \psi(X)aL_c(X)$.

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq 2^{t(X)\psi_c(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem: [Bella and Cammaroto–1988] If X is a Hausdorff space, then $|X| \leq d(X)^{t(X)\psi_c(X)}$.

Lemma: [Hodel–2006] If X is a Urysohn space, then $\psi_c(X) \leq \psi(X)aL_c(X)$.

Theorem: [Hodel–2006] If X is a Urysohn space, then $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$.

Definition [Veličko 1966]:

Definition [Veličko 1966]:

The θ -closure of a set A in a space X is the set

$$\operatorname{cl}_{\theta}(A) = \{x \in X : \text{ for every neighborhood } U \text{ of } x \text{ in } X, \overline{U} \cap A \neq \emptyset\}.$$

Definition [Veličko 1966]:

The θ -closure of a set A in a space X is the set

$$\operatorname{cl}_{\theta}(A) = \{x \in X : \text{ for every neighborhood } U \text{ of } x \text{ in } X, \overline{U} \cap A \neq \emptyset\}.$$

A is called θ -closed if $A = cl_{\theta}(A)$.

Definition [Veličko 1966]:

The θ -closure of a set A in a space X is the set

$$\operatorname{cl}_{\theta}(A) = \{x \in X : \text{ for every neighborhood } U \text{ of } x \text{ in } X, \overline{U} \cap A \neq \emptyset\}.$$

A is called θ -closed if $A = cl_{\theta}(A)$.

A is called θ -dense in X if $\operatorname{cl}_{\theta}(A) = X$.

Theorem: [Bella and Cammaroto–1988]

If X is a Urysohn space, then $|X| \leq 2^{\chi(X)aL(X)}$.

Bella and Cammaroto's inequality

Theorem: [Bella and Cammaroto-1988]

If X is a Urysohn space, then $|X| \leq 2^{\chi(X)aL(X)}$.

The proof uses the "closure" method and the following theorem:

Bella and Cammaroto's inequality

Theorem: [Bella and Cammaroto–1988]

If X is a Urysohn space, then $|X| \leq 2^{\chi(X)aL(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem: [Bella and Cammaroto-1988]

If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{\chi(X)}$.

Definition [Alas and Kočinac–2000]:

Definition [Alas and Kočinac–2000]:

For a topological space X, k(X) is the smallest cardinal number κ

Definition [Alas and Kočinac-2000]:

For a topological space X, k(X) is the smallest cardinal number κ such that for each point $x \in X$, there is a collection \mathcal{V}_x of closed neighborhoods of x

Definition [Alas and Kočinac-2000]:

For a topological space X, k(X) is the smallest cardinal number κ such that for each point $x \in X$, there is a collection \mathcal{V}_x of closed neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$

Definition [Alas and Kočinac-2000]:

For a topological space X, k(X) is the smallest cardinal number κ such that for each point $x \in X$, there is a collection \mathcal{V}_x of closed neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$ and if W is a neighborhood of x then $\mathrm{cl}(W)$ contains a member of \mathcal{V}_x .

Note: $\psi(x) \leq \psi_c(X) \leq \kappa(X) \leq \chi(X)$ for every Hausdorff space X.

A generalization of Bella and Cammaroto inequality

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{k(X)aL(X)}$.

A generalization of Bella and Cammaroto inequality

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{k(X)aL(X)}$.

The proof uses the "closure" method and the following theorem:

A generalization of Bella and Cammaroto inequality

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{k(X)aL(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem: [Alas and Kočinac–2000]

If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{k(X)}$.

Definition of θ -tightness

Definition [Cammaroto and Kočinac–1993]:

The θ-closure operator Bella and Cammaroto inequality Kočinac' inequality

Definition of θ -tightness

Definition [Cammaroto and Kočinac-1993]:

The θ -tightness of a space X, denoted by $t_{\theta}(X)$, is the smallest cardinal κ

Definition of θ -tightness

Definition [Cammaroto and Kočinac-1993]:

The θ -tightness of a space X, denoted by $t_{\theta}(X)$, is the smallest cardinal κ such that for every $A \subset X$ and every $x \in cl_{\theta}(A)$

The θ-closure operator Bella and Cammaroto inequality Kočinac' inequality

Definition of θ -tightness

Definition [Cammaroto and Kočinac-1993]:

The θ -tightness of a space X, denoted by $t_{\theta}(X)$, is the smallest cardinal κ such that for every $A \subset X$ and every $x \in cl_{\theta}(A)$ there exists a set $B \subset A$ such that $|B| \leq \kappa$ and $x \in cl_{\theta}(B)$.

Theorem: [Kočinac–1995] If X is a Urysohn H-closed space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{c}(X)}$.

Theorem: [Kočinac–1995] If X is a Urysohn H-closed space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{c}(X)}$.

Kočinac' asked if the above inequality is also valid for all Urysohn spaces.

Theorem: [Kočinac–1995] If X is a Urysohn H-closed space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{c}(X)}$.

Kočinac' asked if the above inequality is also valid for all Urysohn spaces.

We recall that much more general theorem for H-closed spaces is true.

Theorem: [Kočinac–1995] If X is a Urysohn H-closed space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{c}(X)}$.

Kočinac' asked if the above inequality is also valid for all Urysohn spaces.

We recall that much more general theorem for *H*-closed spaces is true.

Theorem: [Gryzlov–1980, Dow and Porter–1982] If X is an H-closed space, then $|X| \leq 2^{\psi_c(X)}$.

Theorem: [Kočinac–1995] If X is a Urysohn H-closed space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{c}(X)}$.

Kočinac' asked if the above inequality is also valid for all Urysohn spaces.

We recall that much more general theorem for H-closed spaces is true.

Theorem: [Gryzlov–1980, Dow and Porter–1982] If X is an H-closed space, then $|X| \leq 2^{\psi_c(X)}$.

Note: Kočinac' inequality could be considered as an attempt to find, for the class of Urysohn spaces, the counterpart of Bella and Cammaroto inequality that if X is a Hausdorff space, then $|X| \leq d(X)^{t(X)\psi_c(X)}$.

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition:

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition: For every Urysohn space X we define the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$,

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition: For every Urysohn space X we define the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, to be the smallest infinite cardinal κ

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition: For every Urysohn space X we define the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, to be the smallest infinite cardinal κ such that for each $x \in X$,

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition: For every Urysohn space X we define the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, to be the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{V}_x of open neighborhoods of x

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition: For every Urysohn space X we define the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, to be the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{V}_x of open neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$ and $\bigcap \{\operatorname{cl}_{\theta}(\operatorname{cl}(V)) : V \in \mathcal{V}_x\} = \{x\}$.

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition: For every Urysohn space X we define the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, to be the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{V}_x of open neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$ and $\bigcap \{\operatorname{cl}_{\theta}(\operatorname{cl}(V)) : V \in \mathcal{V}_x\} = \{x\}$.

Note 1: If V is open, then $\operatorname{cl}_{\theta}(V) = \operatorname{cl}(V)$ and therefore $\operatorname{cl}_{\theta}(\operatorname{cl}_{\theta}(V)) = \operatorname{cl}_{\theta}(\operatorname{cl}(V))$. This explains our notation $\psi_{\theta^2}(X)$.

In order to find the counterpart for Urysohn spaces of Bella and Cammaroto inequality and to extend Kočinac' inequality to all Urysohn spaces we give the following definition:

Definition: For every Urysohn space X we define the θ^2 -pseudocharacter, denoted by $\psi_{\theta^2}(X)$, to be the smallest infinite cardinal κ such that for each $x \in X$, there is a collection \mathcal{V}_x of open neighborhoods of x such that $|\mathcal{V}_x| \leq \kappa$ and $\bigcap \{\operatorname{cl}_{\theta}(\operatorname{cl}(V)) : V \in \mathcal{V}_x\} = \{x\}$.

Note 1: If V is open, then $\operatorname{cl}_{\theta}(V) = \operatorname{cl}(V)$ and therefore $\operatorname{cl}_{\theta}(\operatorname{cl}_{\theta}(V)) = \operatorname{cl}_{\theta}(\operatorname{cl}(V))$. This explains our notation $\psi_{\theta^2}(X)$.

Note 2: $\psi(x) \leq \psi_c(X) \leq \psi_{\theta^2}(X) \leq \kappa(X) \leq \chi(X)$ for every Urysohn space X.

Theorem: If X is a Urysohn space, then

Theorem: If X is a Urysohn space, then

(a)
$$|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$$
, and

Theorem: If X is a Urysohn space, then

- (a) $|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$, and
- (b) $|[A]_{\theta}| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

Theorem: If X is a Urysohn space, then

- (a) $|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$, and
- (b) $|[A]_{\theta}| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

Corollary:

Theorem: If X is a Urysohn space, then

- (a) $|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$, and
- (b) $|[A]_{\theta}| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

Corollary:

If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

Theorem: If X is a Urysohn space, then

- (a) $|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$, and
- (b) $|[A]_{\theta}| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

Corollary:

If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

We recall that if X is a Urysohn H-closed space then $\operatorname{cl}_{\theta}(\operatorname{cl}(U)) = \operatorname{cl}(U)$ for every open subset U of X.

Theorem: If X is a Urysohn space, then

- (a) $|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$, and
- (b) $|[A]_{\theta}| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

Corollary:

If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

We recall that if X is a Urysohn H-closed space then $\operatorname{cl}_{\theta}(\operatorname{cl}(U)) = \operatorname{cl}(U)$ for every open subset U of X.

Corollary: If X is a Urysohn H-closed space then $\psi_{\theta^2}(X) = \psi_c(X)$.

Theorem: If *X* is a Urysohn space, then

- (a) $|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$, and
- (b) $|[A]_{\theta}| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

Corollary:

If X is a Urysohn space, then $|X| \leq d_{\theta}(X)^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

We recall that if X is a Urysohn H-closed space then $\operatorname{cl}_{\theta}(\operatorname{cl}(U)) = \operatorname{cl}(U)$ for every open subset U of X.

Corollary: If X is a Urysohn H-closed space then $\psi_{\theta^2}(X) = \psi_c(X)$.

Therefore, the former corollary extends Kočinac' inequality to all Urysohn spaces.

A generalization of $|X| \leq 2^{k(X)aL(X)}$

The following theorem generalizes the theorem that if X is a Urysohn space, then $|X| \leq 2^{k(X)aL(X)}$ and therefore Bella and Cammaroto inequality $|X| \leq 2^{\chi(X)aL(X)}$.

Theorem:

For every Urysohn space X, $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$.

A generalization of $|X| \leq 2^{k(X)aL(X)}$

The following theorem generalizes the theorem that if X is a Urysohn space, then $|X| \leq 2^{k(X)aL(X)}$ and therefore Bella and Cammaroto inequality $|X| \leq 2^{\chi(X)aL(X)}$.

Theorem:

For every Urysohn space X, $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$.

The proof uses the "closure" method and the following inequality from the previous theorem:

A generalization of $|X| \leq 2^{k(X)aL(X)}$

The following theorem generalizes the theorem that if X is a Urysohn space, then $|X| \leq 2^{k(X)aL(X)}$ and therefore Bella and Cammaroto inequality $|X| \leq 2^{\chi(X)aL(X)}$.

Theorem:

For every Urysohn space X, $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$.

The proof uses the "closure" method and the following inequality from the previous theorem:

$$|\mathrm{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}.$$

To compare our result $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$ with Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$ we recall the following definition:

To compare our result $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$ with Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$ we recall the following definition:

Definition: [Viglino–1971; Porter and Votaw–1973]

To compare our result $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$ with Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$ we recall the following definition:

Definition: [Viglino–1971; Porter and Votaw–1973] Let X be a topological space, $A \subset X$ and $n \in \mathbb{N}^+$.

To compare our result $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$ with Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$ we recall the following definition:

Definition: [Viglino–1971; Porter and Votaw–1973] Let X be a topological space, $A \subset X$ and $n \in \mathbb{N}^+$. A point $x \in X$ is S(n)-separated from A if there exist open sets U_i , i = 1, 2, ..., n such that $x \in U_1$, $\overline{U}_i \subset U_{i+1}$ for i = 1, 2, ..., n-1 and $\overline{U}_n \cap A = \varnothing$;

To compare our result $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$ with Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$ we recall the following definition:

Definition: [Viglino-1971; Porter and Votaw-1973]

Let X be a topological space, $A \subset X$ and $n \in \mathbb{N}^+$. A point $x \in X$ is S(n)-separated from A if there exist open sets U_i , i = 1, 2, ..., n such that $x \in U_1$, $\overline{U}_i \subset U_{i+1}$ for i = 1, 2, ..., n-1 and $\overline{U}_n \cap A = \emptyset$;

X is an S(n)-space if every two distinct points in X are S(n)-separated.

To compare our result $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$ with Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$ we recall the following definition:

Definition: [Viglino-1971; Porter and Votaw-1973]

Let X be a topological space, $A \subset X$ and $n \in \mathbb{N}^+$. A point $x \in X$ is S(n)-separated from A if there exist open sets U_i , i = 1, 2, ..., n such that $x \in U_1$, $\overline{U}_i \subset U_{i+1}$ for i = 1, 2, ..., n-1 and $\overline{U}_n \cap A = \emptyset$;

X is an S(n)-space if every two distinct points in X are S(n)-separated.

It follows directly from the above definitions that the S(1)-spaces are exactly the Hausdorff spaces and the S(2)-spaces are exactly the Urysohn spaces.

The θ^2 -pseudocharacter of a Urysohn space **Generalizations of Bella and Cammaroto inequalities** Generalization of Arhangel skiï-Šapirovskiï's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Lemma: If X is an S(3)-space, then $\psi_{\theta^2}(X) \leq \psi(X)aL_c(X)$.

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Lemma: If X is an S(3)-space, then $\psi_{\theta^2}(X) \leq \psi(X)aL_c(X)$.

Therefore, for the class of S(3)-spaces X, the inequality

$$|X| \le 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$$

The θ^2 -pseudocharacter of a Urysohn space **Generalizations of Bella and Cammaroto inequalities** Generalization of Arhangel'skiī-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Lemma: If X is an S(3)-space, then $\psi_{\theta^2}(X) \leq \psi(X)aL_c(X)$. Therefore, for the class of S(3)-spaces X, the inequality

$$|X| \le 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$$

better approximates the cardinality of the space X than Bella-Cammaroto-Hodel inequality

$$|X| \le 2^{t(X)\psi(X)aL_c(X)}$$

for spaces for which $t_{\theta}(X) \leq t(X)$.

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Lemma: If X is an S(3)-space, then $\psi_{\theta^2}(X) \leq \psi(X)aL_c(X)$. Therefore, for the class of S(3)-spaces X, the inequality

$$|X| < 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$$

better approximates the cardinality of the space X than Bella-Cammaroto-Hodel inequality

$$|X| \leq 2^{t(X)\psi(X)aL_c(X)}$$

for spaces for which $t_{\theta}(X) \leq t(X)$.

We recall that in 2014 Cammaroro, Catalioto and Porter showed that even for H-closed Urysohn spaces X it is possible $t_{\theta}(X) < t(X)$, $t_{\theta}(X) > t(X)$, or $t_{\theta}(X) = t(X)$.

The θ^2 -pseudocharacter of a Urysohn space **Generalizations of Bella and Cammaroto inequalities** Generalization of Arhangel skiī-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Definition: [Cammaroto and Kočinac – 1993] For a topological space X, $t_{\theta_1}(X)$ is the smallest infinite cardinal κ such that for every $A \subset X$ and every $x \in \operatorname{cl}(X)$ there exists a set $B \subset A$ such that $|B| \leq \kappa$ and $x \in \operatorname{cl}_{\theta}(B)$.

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Definition: [Cammaroto and Kočinac – 1993] For a topological space X, $t_{\theta_1}(X)$ is the smallest infinite cardinal κ such that for every $A \subset X$ and every $x \in \operatorname{cl}(X)$ there exists a set $B \subset A$ such that $|B| \leq \kappa$ and $x \in \operatorname{cl}_{\theta}(B)$.

Note: $t_{\theta_1}(X) \leq t_{\theta}(X)$ and $t_{\theta_1}(X) \leq t(X)$ for every space X.

The θ^2 -pseudocharacter of a Urysohn space **Generalizations of Bella and Cammaroto inequalities** Generalization of Arhangel'skiĭ-Šapirovskiĭ's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Definition: [Cammaroto and Kočinac – 1993] For a topological space X, $t_{\theta_1}(X)$ is the smallest infinite cardinal κ such that for every $A \subset X$ and every $x \in \operatorname{cl}(X)$ there exists a set $B \subset A$ such that $|B| \leq \kappa$ and $x \in \operatorname{cl}_{\theta}(B)$.

Note: $t_{\theta_1}(X) \leq t_{\theta}(X)$ and $t_{\theta_1}(X) \leq t(X)$ for every space X.

Therefore, if we want to get a stronger inequality it is better to try to replace t(X) with $t_{\theta_1}(X)$.

The θ^2 -pseudocharacter of a Urysohn space **Generalizations of Bella and Cammaroto inequalities** Generalization of Arhangel[']skiï-Śapirovskiï's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)aL_c(X)}$.

The θ^2 -pseudocharacter of a Urysohn space **Generalizations of Bella and Cammaroto inequalities** Generalization of Arhangel'skiī-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

The θ^2 -pseudocharacter of a Urysohn space **Generalizations of Bella and Cammaroto inequalities** Generalization of Arhangel'skiī-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem:

If X is a Urysohn space and $A \subset X$, then $|\operatorname{cl}(A)| \leq |A|^{t_{\theta_1}(X)\psi_{\theta^2}(X)}$.

A generalization of $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)aL_c(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem:

If X is a Urysohn space and $A \subset X$, then $|\operatorname{cl}(A)| \leq |A|^{t_{\theta_1}(X)\psi_{\theta^2}(X)}$.

Since for S(3)-spaces X we have $\psi_{\theta^2}(X) \leq \psi(X)aL_c(X)$, the inequality in the former theorem better approximate the cardinality of S(3)-spaces than Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$.

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel'skiī-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)}L(X)$

Since for Urysohn spaces X we have $\psi_{\theta^2}(X) \leq \psi(X)L(X)$,

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel'skīi-Šapirovskīi's inequality

A generalization of $|X| \leq 2^{t(X)\psi(X)L(X)}$

Since for Urysohn spaces X we have $\psi_{\theta^2}(X) \leq \psi(X)L(X)$, the inequality

$$|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)aL_c(X)}$$

A generalization of $|X| \leq 2^{t(X)\psi(X)L(X)}$

Since for Urysohn spaces X we have $\psi_{\theta^2}(X) \leq \psi(X)L(X)$, the inequality

$$|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)aL_c(X)}$$

better approximate the cardinality of Urysohn spaces X than Arhangel'skiĭ–Šapirovskiĭ's inequality

$$|X| \le 2^{t(X)\psi(X)L(X)}.$$

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel shir-Sapirovskiis inequality

Another generalization of $|X| \leq 2^{t(X)\psi(X)L(X)}$

Definition: [Basile, Bonanzinga, Carlson - 2018] The θ -almost Lindelöf degree of a subset Y of a space X, is θ -aL $(Y,X) = \min\{\kappa : \text{for every cover } \mathcal{V} \text{ of } Y \text{ consisting of open subsets of } X, \text{ there exists } \mathcal{V}' \subseteq \mathcal{V} \text{ such that } |\mathcal{V}'| \leq \kappa \text{ and } \bigcup\{cl_{\theta}(\operatorname{cl}(V)) : V \in \mathcal{V}'\} = Y\}.$

Another generalization of $|X| \leq 2^{t(X)} \psi(X) L(X)$

Definition: [Basile, Bonanzinga, Carlson - 2018] The θ -almost Lindelöf degree of a subset Y of a space X, is θ -aL $(Y,X) = \min\{\kappa : \text{for every cover } \mathcal{V} \text{ of } Y \text{ consisting of open subsets of } X, \text{ there exists } \mathcal{V}' \subseteq \mathcal{V} \text{ such that } |\mathcal{V}'| \leq \kappa \text{ and } \bigcup \{cl_{\theta}(\operatorname{cl}(V)) : V \in \mathcal{V}'\} = Y\}.$

The function θ -aL(X,X) is called θ -almost Lindelöf degree of the space X and is denoted by θ -aL(X).

Another generalization of $|X| \leq 2^{t(X)\psi(X)L(X)}$

Definition: [Basile, Bonanzinga, Carlson – 2018] The θ -almost Lindelöf degree of a subset Y of a space X, is θ -aL $(Y,X) = \min\{\kappa : \text{for every cover } \mathcal{V} \text{ of } Y \text{ consisting of open subsets of } X, \text{ there exists } \mathcal{V}' \subseteq \mathcal{V} \text{ such that } |\mathcal{V}'| \leq \kappa \text{ and } \bigcup \{cl_{\theta}(\operatorname{cl}(V)) : V \in \mathcal{V}'\} = Y\}.$

The function θ -aL(X,X) is called θ -almost Lindelöf degree of the space X and is denoted by θ -aL(X).

The θ -almost Lindelöf degree with respect to closed subsets of X is θ -a $L_c(X) = \sup\{\theta$ -a $L(C,X) : C \subseteq X \text{ is closed}\}.$

Another generalization of $|X| \leq 2^{t(X)\psi(X)L(X)}$

Definition: [Basile, Bonanzinga, Carlson – 2018] The θ -almost Lindelöf degree of a subset Y of a space X, is θ -aL $(Y,X) = \min\{\kappa : \text{for every cover } \mathcal{V} \text{ of } Y \text{ consisting of open subsets of } X, \text{ there exists } \mathcal{V}' \subseteq \mathcal{V} \text{ such that } |\mathcal{V}'| \leq \kappa \text{ and } \bigcup \{cl_{\theta}(\operatorname{cl}(V)) : V \in \mathcal{V}'\} = Y\}.$

The function θ -aL(X,X) is called θ -almost Lindelöf degree of the space X and is denoted by θ -aL(X).

The θ -almost Lindelöf degree with respect to closed subsets of X is θ - $aL_c(X) = \sup\{\theta$ - $aL(C,X) : C \subseteq X \text{ is closed}\}.$

The θ -almost Lindelöf degree with respect to θ -closed subsets of X is θ -aL $_{\theta}(X) = \sup\{\theta$ -aL $_{\theta}(X) : C \subseteq X \text{ is } \theta$ -closed $\}$.

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel'skīī-Šapirovskīī's inequality

A generalization of $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)\theta - aL_{\theta}(X)}$.

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel'skīī-Šapirovskīī's inequality

A generalization of $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)\theta - aL_{\theta}(X)}$.

The proof uses the "closure" method and the following theorem:

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel shir-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)aL(X)}$

Theorem:

If X is a Urysohn space, then $|X| \leq 2^{t_{\theta}(X)\psi_{\theta^2}(X)\theta - aL_{\theta}(X)}$.

The proof uses the "closure" method and the following theorem:

Theorem:

If X is a Urysohn space and $A \subset X$, then $|\operatorname{cl}_{\theta}(A)| \leq |A|^{t_{\theta}(X)\psi_{\theta^2}(X)}$.

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel'skiī-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t_{\theta_1}(X)} \psi_{\theta^2}(X)^{aL_c(X)}$

Theorem: If X is a Urysohn space, then $|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)\theta - aL_c(X)}$.

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel´skiī-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t_{\theta_1}(X)} \psi_{\theta^2}(X) a L_c(X)$

Theorem: If X is a Urysohn space, then $|X| < 2^{t_{\theta_1}(X)}\psi_{\theta^2}(X)\theta^{-aL_c(X)}$.

For the proof we need to introduce the following concept:

A generalization of $|X| \leq 2^{t_{\theta_1}(X)} \psi_{\theta^2}(X) a L_c(X)$

Theorem: If X is a Urysohn space, then

$$|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)\theta - aL_c(X)}.$$

For the proof we need to introduce the following concept:

Definition: For $A \subset X$ and an infinite cardinal κ , let

$$[A]^{\leq \kappa} = \{B : B \subseteq A, |B| \leq \kappa\}.$$

A generalization of $|X| \leq 2^{t_{\theta_1}(X)} \psi_{\theta_2}(X) = (X)^{t_{\theta_1}(X)} \psi_{\theta_2}(X) = (X)^{t_{\theta_$

Theorem: If X is a Urysohn space, then

$$|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)\theta - aL_c(X)}.$$

For the proof we need to introduce the following concept:

Definition: For $A \subset X$ and an infinite cardinal κ , let

$$[A]^{\leq \kappa} = \{B : B \subseteq A, |B| \leq \kappa\}.$$

We define the θ - κ -closure of A as $\mathrm{cl}_{\theta\kappa}(A) = \bigcup_{B \in [A]^{\leq \kappa}} \mathrm{cl}_{\theta}(B)$.

A generalization of $|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta_2}(X)aL_c(X)}$

Theorem: If X is a Urysohn space, then

$$|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)\theta - aL_c(X)}.$$

For the proof we need to introduce the following concept:

Definition: For $A \subset X$ and an infinite cardinal κ , let $[A]^{\leq \kappa} = \{B : B \subset A, |B| < \kappa\}.$

We define the θ - κ -closure of A as $\mathrm{cl}_{\theta\kappa}(A) = \bigcup_{B \in [A]^{\leq \kappa}} \mathrm{cl}_{\theta}(B)$.

Theorem: If X is a Urysohn space, $A \subset X$, and κ is an infinite cardinal, then $|\operatorname{cl}_{\theta\kappa}(A)| \leq |A|^{\kappa \cdot \psi_{\theta^2}(X)}$.

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel'skiï-Šapirovskiī's inequality

A generalization of $|X| \leq 2^{t_{\theta_1}(X)} \overline{\psi_{\theta^2}(X)aL_c(X)}$

Theorem: If X is a Urysohn space, then $|X| \leq 2^{t_{\theta_1}(X)\psi_{\theta^2}(X)\theta - aL_c(X)}$.

For the proof we need to introduce the following concept:

Definition: For $A \subset X$ and an infinite cardinal κ , let $[A]^{\leq \kappa} = \{B : B \subseteq A, |B| \leq \kappa\}.$

We define the θ - κ -closure of A as $\mathrm{cl}_{\theta\kappa}(A) = \bigcup_{B \in [A]^{\leq \kappa}} \mathrm{cl}_{\theta}(B)$.

Theorem: If X is a Urysohn space, $A \subset X$, and κ is an infinite cardinal, then $|\operatorname{cl}_{\theta\kappa}(A)| \leq |A|^{\kappa \cdot \psi_{\theta^2}(X)}$.

Since for S(4)-spaces X we have $\psi_{\theta^2}(X) \leq \psi(X)\theta$ - $aL_c(X)$, our new inequality better approximate the cardinality of S(4)-spaces than Bella and Cammaroto–Hodel inequality $|X| \leq 2^{t(X)\psi(X)aL_c(X)}$.

The θ^2 -pseudocharacter of a Urysohn space Generalizations of Bella and Cammaroto inequalities Generalization of Arhangel'skiī-Šapirovskiī's inequality

The end

THANK YOU!