Specification properties in CR-dynamical systems

Ivan Jelić work in progress with I. Banič, G. Erceg and J. Kennedy

The $38^{\rm th}$ Summer Conference on Topology and Its Applications

July 8, 2024

Ivan Jelić (SUMTOPO 2024)

SP in CR-dynamical systems

Let X be a non-empty compact metric space and let f : X → X be a continuous function. We say that (X, f) is a dynamical system.

- Let X be a non-empty compact metric space and let f : X → X be a continuous function. We say that (X, f) is a dynamical system.
- Let (X, f) be a dynamical system and $x \in X$. The sequence

$$(x, f(x), f^{2}(x), f^{3}(x), ...)$$

is called a forward orbit of the point x.

- Let X be a non-empty compact metric space and let f : X → X be a continuous function. We say that (X, f) is a dynamical system.
- Let (X, f) be a dynamical system and $x \in X$. The sequence

$$\left(x, f(x), f^{2}(x), f^{3}(x), \ldots\right)$$

is called a forward orbit of the point x.

The set

$$\left\{x, f(x), f^{2}(x), f^{3}(x), \ldots\right\}$$

is called a forward orbit set of the point x.

 Let (X, f) be a dynamical system, let x ∈ X and let k, l be non-negative integers such that k ≤ l. We say that

$$f^{[k,\ell]}(x) = \left(f^k(x), f^{k+1}(x), f^{k+2}(x), \dots, f^{\ell}(x)\right)$$

is a $[k, \ell]$ -orbit segment of the point x.

Let (X, f) be a dynamical system, let n be a positive integer and, for each $j \in \{1, 2, 3, ..., n\}$, let

- k_j and ℓ_j be non-negative integers such that $k_j \leq \ell_j$
- $x_j \in X$.

We say that the n - tuple

$$S = \left(f^{[k_1,\ell_1]}(x_1), f^{[k_2,\ell_2]}(x_2), f^{[k_3,\ell_3]}(x_3), \dots, f^{[k_n,\ell_n]}(x_n)\right)$$

is an n-specification (or just a specification) in (X, f).

• Let N be a positive integer and let

$$S = \left(f^{[k_1,\ell_1]}(x_1), f^{[k_2,\ell_2]}(x_2), f^{[k_3,\ell_3]}(x_3), \dots, f^{[k_n,\ell_n]}(x_n)\right)$$

be a specification in (X, f). We say that S is an N-spaced specification if

$$k_{j+1}-\ell_j\geq N,$$

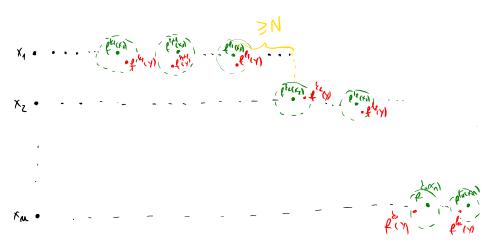
for each $j \in \{1, 2, 3, \dots, n-1\}$.

Let (X, f) be a dynamical system, let N be a positive integer, let $\varepsilon > 0$, let $y \in X$ and let

$$S = \left(f^{[k_1,\ell_1]}(x_1), f^{[k_2,\ell_2]}(x_2), f^{[k_3,\ell_3]}(x_3), \dots, f^{[k_n,\ell_n]}(x_n)\right)$$

be an *N*-spaced specification in (X, f). We say that S is ε -traced in (X, f)by y if for each $i \in \{1, 2, 3, ..., n\}$ and for each $j \in \{k_i, k_i + 1, k_i + 2, ..., \ell_i\}$,

 $d(f^j(y), f^j(x_i)) \leq \varepsilon.$



▲日▶ ▲圖▶ ▲画▶ ▲画▶ ▲国▼

Let (X, f) be a dynamical system. We say that (X, f) has specification property if for each $\varepsilon > 0$ there is a positive integer N such that for any N-spaced specification S in (X, f) there is $y \in X$ such that S is ε -traced in (X, f) by y. Let $X_{\infty} = \lim_{\leftarrow} (X_n, f_n)$ denote the inverse limit of a inverse sequence (X_n, f_n) , where $X_n = X$ and $f_n = f$, for every $n \in \mathbb{N}$. We define the shift map $\sigma : X_{\infty} \to X_{\infty}$ by the rule

$$\sigma(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots),$$

for every $(x_1, x_2, x_3, \ldots) \in X_{\infty}$.

Theorem (BEJK, 2024.)

Let (X, f) be a dynamical system such that f is a surjection. Then (X, f) has specification property if and only if (X_{∞}, σ) has specification property.

• Let (X, f) be a dynamical system and let

$$S = \left(f^{[k_1,\ell_1]}(x_1), f^{[k_2,\ell_2]}(x_2), f^{[k_3,\ell_3]}(x_3), \dots, f^{[k_n,\ell_n]}(x_n)\right)$$

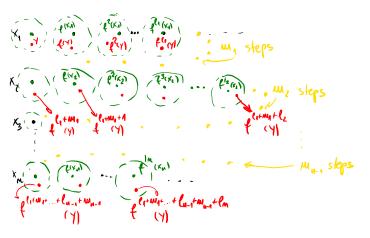
be a specification in (X, f). If $k_i = 0$, for each $i \in \{1, 2, 3, ..., n\}$, then we say that S is an initial specification in (X, f).

Let (X, f) be a dynamical system, let $\ell_0 = m_0 = 0$, let $m_1, m_2, m_3, \ldots, m_{n-1}$ be positive integers, let $\varepsilon > 0$, let $y \in X$, and let

$$S = \left(f^{[0,\ell_1]}(x_1), f^{[0,\ell_2]}(x_2), f^{[0,\ell_3]}(x_3), \dots, f^{[0,\ell_n]}(x_n)\right)$$

be an initial specification in (X, f). We say that S is $(\varepsilon, m_1, m_2, m_3, \ldots, m_{n-1})$ -traced in (X, f) by y if for each $i \in \{1, 2, 3, \ldots, n\}$ and for each $j \in \{0, 1, 2, \ldots, \ell_i\}$,

$$d\Big(f^{\ell_0+m_0+\ell_1+m_1+\ell_2+m_2+...+\ell_{i-1}+m_{i-1}+j}(y),f^j(x_i)\Big)\leq \varepsilon.$$



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三国 - のへで

Let (X, f) be a dynamical system. We say that (X, f) has initial specification property if for each $\varepsilon > 0$ there is a positive integer N such that

- for each positive integer n,
- for all positive integers $m_1, m_2, m_3, \ldots, m_{n-1}$ such that $m_i \ge N$, for each $i \in \{1, 2, 3, \ldots, n-1\}$,
- for each initial *n*-specification S,

there is $y \in X$ such that S is $(\varepsilon, m_1, m_2, m_3, \dots, m_{n-1})$ -traced in (X, f) by y.

Specification property and initial specification property, in general, are not equivalent.

• Let X = [0,1] and let $f : X \to X$ be defined by

$$f(x)=0,$$

for any $x \in X$. Note that (X, f) has specification property but it does not have initial specification property.

Theorem

Let X be a compact metric space and let $f : X \to X$ be a continuous surjection. Then (X, f) has specification property if and only if (X, f) has initial specification property.

- If X is a compact metric space, then 2^X denotes the set of all non-empty closed subsets of X.
- Let X be a compact metric space and let F ⊆ X × X be a relation on X. If F ∈ 2^{X×X}, then we say that F is a closed relation on X.
- If F is a closed relation on a compact metric space X, then the pair (X, F) is called a CR-dynamical system.

 Let (X, F) be a CR-dynamical system, let x ∈ X and let k ≤ ℓ be non-negative integers. We use F^[k,ℓ] (x) to denote

$$F^{[k,\ell]}(x) = \left(F^{k}(x), F^{k+1}(x), F^{k+2}(x), \dots, F^{\ell}(x)\right)$$

and say that $F^{[k,\ell]}(x)$ is the $[k,\ell]$ -orbit segment of the point x.

Let (X, F) be a CR-dynamical system, let n be a positive integer and, for each $j \in \{1, 2, ..., n\}$, let

- k_j and ℓ_j be non-negative integers such that $k_j \leq \ell_j$
- $x_j \in X$.

We say that the *n*-tuple (of sets)

$$\left(F^{[k_1,\ell_1]}(x_1),F^{[k_2,\ell_2]}(x_2),F^{[k_3,\ell_3]}(x_3),\ldots,F^{[k_n,\ell_n]}(x_n)\right)$$

is an *n*-specification (or just a specification) in (X, F).

Let (X, F) be a CR-dynamical system and let

$$S = \left(F^{[k_1,\ell_1]}(x_1), F^{[k_2,\ell_2]}(x_2), F^{[k_3,\ell_3]}(x_3), \dots, F^{[k_n,\ell_n]}(x_n)\right)$$

be a specification in (X, F). We say that S is an N-spaced specification if, for each $j \in \{1, 2, ..., n-1\}$,

$$k_{j+1}-\ell_j\geq N.$$

э

Let (X, F) be a CR-dynamical system, let d be the metric on X, let N be a positive integer, let $\epsilon > 0$, let $y \in X$ and let

$$S = \left(F^{[k_1,\ell_1]}(x_1), F^{[k_2,\ell_2]}(x_2), F^{[k_3,\ell_3]}(x_3), \dots, F^{[k_n,\ell_n]}(x_n)\right)$$

be an N-spaced specification in (X, F). We say that S is ϵ -traced in (X, F) by y if, for each $i \in \{1, 2, ..., n\}$ and for each $j \in \{k_i, k_i + 1, k_1 + 2..., \ell_i\}$,

 $d\left(F^{j}\left(y\right),F^{j}\left(x_{i}\right)\right)\leq\epsilon.$

Let (X, F) be a CR-dynamical system. We say that (X, F) has specification property if for every $\epsilon > 0$ there is a positive integer N such that for any N-spaced specification S in (X, F) there exists $y \in X$ such that S is ϵ -traced in (X, F) by y.

э

Theorem (BEJK, 2024.)

Let (X, F) be a CR-dynamical system. If there exists a positive integer n_0 such that $F^{n_0}(x) \cap F^{n_0}(y) \neq \emptyset$, for all $x, y \in X$, then (X, F) has specification property.

э

Let (X, F) be a CR-dynamical system, let x ∈ X and let l be a non-negative integer. We say that F^[0,ℓ](x) ia an initial l-orbit segment of the point x.

Let (X, F) be a CR-dynamical system, let n be a positive integer and, for each $j \in \{1, 2, ..., n\}$, let

- ℓ_j be non-negative integer
- $x_j \in X$.

We say that the *n*-tuple (of sets)

$$\left(F^{[0,\ell_1]}(x_1), F^{[0,\ell_2]}(x_2), F^{[0,\ell_3]}(x_3), \dots, F^{[0,\ell_n]}(x_n)\right)$$

is an initial n-specification (or just an initial specification) in (X, F).

Let (X, F) be a CR-dynamical system, let d be the metric on X, let n and $m_1, m_2, \ldots, m_{n-1}$ be positive integers, let $\epsilon > 0$, let $y \in X$ and let

$$S = \left(F^{[0,\ell_1]}(x_1), F^{[0,\ell_2]}(x_2), F^{[0,\ell_3]}(x_3), \dots, F^{[0,\ell_n]}(x_n)\right)$$

be an initial specification in (X, F). We say that S is $(\epsilon, m_1, m_2, \ldots, m_{n-1})$ -traced in (X, F) by y if, for each $i \in \{1, 2, \ldots, n\}$ and for each $j \in \{0, 1, 2, \ldots, \ell_i\}$,

$$d\left(\mathsf{F}^{\ell_{1}+m_{1}+\ell_{2}+m_{2}+\cdots+\ell_{i-1}+m_{i-1}+j}\left(y
ight),\mathsf{F}^{j}\left(x_{i}
ight)
ight)\leq\epsilon.$$

Let (X, F) be a CR-dynamical system. We say that (X, F) has initial specification property if for every $\epsilon > 0$ there is a positive integer N such that

- for each positive integer n
- for all positive integers $m_1, m_2, \ldots, m_{n-1}$ such that, for each $i \in \{1, 2, \ldots, n-1\}, m_i \ge N$

and for any initial specification S in (X, F) there exists $y \in X$ such that S is $(\epsilon, m_1, m_2, \ldots, m_{n-1})$ -traced in (X, F) by y.

The following example shows that in general, the specification property is not equivalent to the initial specification property.

 Let X = [0,1] and let F = [0,1] × {1}. Note that (X, F) has specification property but it does not have initial specification property. However, the following theorem holds.

Theorem (BEJK, 2024.)

Let (X, F) be a CR-dynamical system. If (X, F) has initial specification property, then (X, F) has specification property.

э

The following example shows that even if $p_1(F) = p_2(F) = X$, the specification property and initial specification property may not be equivalent.

Example

Let X = [0, 1] and let

$$F = \left(\left[0, \frac{1}{2} \right] \times \{0\} \right) \cup \left(\left[\frac{1}{2}, 1 \right] \times \{1\} \right) \cup \left(\{1\} \times [0, 1] \right).$$

Note that (X, F) has specification property but it does not have initial specification property.

э

Theorem (BEJK, 2024.)

Let (X, F) be a CR-dynamical system. If there is a positive integer n_0 such that $F^{n_0}(x) = X$, for each $x \in X$, then (X, F) has specification property as well as initial specification property.

Theorem (BEJK, 2024.)

Let (X, F) be a CR-dynamical system. If there is a positive integer n_0 such that $F^{n_0}(x) = X$, for each $x \in X$, then (X, F) has specification property as well as initial specification property.

Example

Let X = [0, 1] and let

$$\mathsf{F} = \left(\left[0, \frac{1}{2} \right] \times \{0\} \right) \cup \left(\{0\} \times \left[0, \frac{1}{2} \right] \right) \cup \left(\left[\frac{1}{2}, 1 \right] \times \{1\} \right) \cup \left(\{1\} \times \left[\frac{1}{2}, 1 \right] \right)$$

Note that, for each $x \in X$, $F^4(x) = X$. Therefore, by the previous theorem, (X, F) has specification property as well as initial specification property.

 D. Kwietniak, M. Lacka and P. Oprocha, A panorama of specification-like properties and their consequences, arXiv:1503.07355v2 [math.DS], 2015.

Thank you for your attention!

∃ →

Image: A matrix

æ