The Baire property and precompact duality

Isabel Sepúlveda

Universitat Jaume I, Castellón de la Plana isepulve@uji.es

SUMMER CONFERENCE ON TOPOLOGY AND ITS APPLICATIONS

July 2024

This is joint work with Professors María Vicenta Ferrer (*Universitat Jaume I*), Salvador Hernández (*Universitat Jaume I*), and F. Javier Trigos-Arrieta (*California State University*).

<□▶ <四▶ < 注▶ < 注▶ < 注▶ = 注

イロト 人間ト イヨト イヨト

= nac

Table of contents

Definitions

- Groups \mathbb{T} and \widehat{G}
- Finite-open topology and totally bounded groups
- Totally bounded groups and Baire groups
- 2 Main Problem
 - Main Problem
 - Some history
- 3 Main Theorem
 - Some topology
 - Some algebra
 - Proof of the Main Theorem

Applications

Groups \mathbb{T} and \widehat{G}

All groups considered in this presentation are assumed to be **Abelian or** commutative.

 $\textbf{0} \quad \text{We let} \quad \mathbb{T} = \left([0,1), + \left(\text{mod } \mathbb{Z}\right)\right) \simeq \left(\left(-\frac{1}{2}, \frac{1}{2}\right], + \left(\text{mod } \mathbb{Z}\right)\right),$

equipped with the topology inherited from ${\mathbb R}$ as a quotient space.

・ロト ・部ト ・注ト ・注ト - 注

Groups \mathbb{T} and \widehat{G}

All groups considered in this presentation are assumed to be **Abelian or** commutative.

• We let $\mathbb{T} = ([0,1), + (\text{mod } \mathbb{Z})) \simeq ((-\frac{1}{2}, \frac{1}{2}], + (\text{mod } \mathbb{Z})),$ equipped with the topology inherited from \mathbb{R} as a quotient space.

2 If G is a topological group, let

 $\widehat{\mathcal{G}} := \{ \phi : \mathcal{G} \to \mathbb{T} : \phi \text{ continuous homomorphism} \}.$

It becomes a group declaring

$$(\phi_1\phi_2)(x) := \phi_1(x) + \phi_2(x).$$

・ロト・日本・ キャー キー うらの

Groups \mathbb{T} and \widehat{G}

All groups considered in this presentation are assumed to be **Abelian or** commutative.

- We let $\mathbb{T} = ([0,1), + (\text{mod } \mathbb{Z})) \simeq ((-\frac{1}{2}, \frac{1}{2}], + (\text{mod } \mathbb{Z})),$ equipped with the topology inherited from \mathbb{R} as a quotient space.
- 2 If G is a topological group, let

 $\widehat{{\mathcal G}}:=\{\phi:\,{\mathcal G}\to{\mathbb T}:\phi\text{ continuous homomorphism}\}.$

It becomes a group declaring

$$(\phi_1\phi_2)(x) := \phi_1(x) + \phi_2(x).$$

・ロト・日本・ キャー キー うらの

Finite-open topology and totally bounded groups

● A topological group *G* is **MAP**, if whenever $g \in G \setminus \{0\}$, there is $\phi \in \widehat{G}$ with $\phi(g) \neq 0$.

• If
$$F \subseteq G$$
, and $V \subseteq \mathbb{T}$, let $(F, V) := \{ \phi \in G : \phi[F] \subseteq V \}$. Consider
 $\mathcal{B} = \{ (F, V) : F \text{ finite in } G, V \text{ open in } \mathbb{T} \}.$

 \mathcal{B} is a subbase of the group toplogy τ_p on \widehat{G} called the **finite-open** topology on \widehat{G} . We define $\widehat{G}_p := (\widehat{G}, \tau_p)$.

Finite-open topology and totally bounded groups

A topological group G is MAP, if whenever g ∈ G \ {0}, there is φ ∈ G with φ(g) ≠ 0.

• If
$$F \subseteq G$$
, and $V \subseteq \mathbb{T}$, let $(F, V) := \{ \phi \in \widehat{G} : \phi[F] \subseteq V \}$. Consider
 $\mathcal{B} = \{ (F, V) : F \text{ finite in } G, V \text{ open in } \mathbb{T} \}.$

 \mathcal{B} is a subbase of the group toplogy τ_p on \widehat{G} called the *finite-open* topology on \widehat{G} . We define $\widehat{G}_p := (\widehat{G}, \tau_p)$.

A totally bounded group G is a MAP topological group such that its topology is the weakest group topology that makes the elements of G continuous.

Finite-open topology and totally bounded groups

A topological group G is MAP, if whenever g ∈ G \ {0}, there is φ ∈ G with φ(g) ≠ 0.

• If
$$F \subseteq G$$
, and $V \subseteq \mathbb{T}$, let $(F, V) := \{ \phi \in \widehat{G} : \phi[F] \subseteq V \}$. Consider
 $\mathcal{B} = \{ (F, V) : F \text{ finite in } G, V \text{ open in } \mathbb{T} \}.$

 \mathcal{B} is a subbase of the group toplogy τ_p on \widehat{G} called the *finite-open* topology on \widehat{G} . We define $\widehat{G}_p := (\widehat{G}, \tau_p)$.

A totally bounded group G is a MAP topological group such that its topology is the weakest group topology that makes the elements of G continuous.

Totally bounded groups and Baire groups

• \widehat{G}_p is always totally bounded.

 $G \text{ is totally bounded } \iff \widehat{(\widehat{G}_p)}_p \cong G$

[Comfort-Ross, Raczkowski, Trigos-Arrieta]

() TFAE for a topological group G.

- a. No non-empty open set U of G is of *first category*, *i. e.*, U cannot be written as a *countable* union of sets whose closure has empty interior.
- b. *G* is not of *first category*, *i. e.*, *G* cannot be written as a *countable* union of sets whose closure has empty interior.
- c. The intersection of countable many dense open sets of G is dense in G.

If G satisfies either one of the properties listed, we say that G is a **Baire** group or that G is of **second category** (in general these two concepts are different for spaces that are not topological groups).

イロト イポト イラト イラト

nar

Totally bounded groups and Baire groups

• \widehat{G}_p is always totally bounded.

G is totally bounded $\iff (\widehat{\widehat{G}_p})_p \cong G$

[Comfort-Ross, Raczkowski, Trigos-Arrieta]

• TFAE for a topological group G.

- a. No non-empty open set U of G is of *first category*, *i. e.*, U cannot be written as a *countable* union of sets whose closure has empty interior.
- b. *G* is not of *first category*, *i. e.*, *G* cannot be written as a *countable* union of sets whose closure has empty interior.
- c. The intersection of countable many dense open sets of G is dense in G.

If G satisfies either one of the properties listed, we say that G is a **Baire** group or that G is of **second category** (in general these two concepts are different for spaces that are not topological groups).

nar

化口下 化塑下 化原下 化原下

3

Sac

Table of contents

Definitions

- Groups \mathbb{T} and \widehat{G}
- Finite-open topology and totally bounded groups
- Totally bounded groups and Baire groups
- 2 Main Problem
 - Main Problem
 - Some history
- 3 Main Theorem
 - Some topology
 - Some algebra
 - Proof of the Main Theorem

Applications

イロト イヨト イヨト

Main Problem

Question

Is it true that every compact subset of \widehat{G}_p is finite, provided that G is a totally bounded group with the Baire property?

The converse is false. In 2006, Hart and Kunen, and in 2021, Ferrer, Hernández and Tkachenko, offered examples of totally bounded groups G not Baire, such that \hat{G}_p does not contain infinite compact (resp. bounded) sets.

Main Problem

Question

Is it true that every compact subset of \widehat{G}_p is finite, provided that G is a totally bounded group with the Baire property?

The converse is false. In 2006, Hart and Kunen, and in 2021, Ferrer, Hernández and Tkachenko, offered examples of totally bounded groups *G* not Baire, such that \hat{G}_p does not contain infinite compact (resp. bounded) sets.

ヘロト 人間ト 人団ト 人団ト

Some history

- **A.** In 1955, Leptin proved that \widehat{G}_p , with *G* compact, hence Baire, does not contain infinite compact sets.
- **B.** Let G be a **totally bounded Baire group**. In 2012, Bruguera and Tkachenko (=[BT]) proved (a) that \hat{G}_p does not contain non-trivial convergent sequences, and (b) if G satisfies **the open refinement condition**, then \hat{G}_p does not contain infinite compact sets.

Some history

- **A.** In 1955, Leptin proved that \widehat{G}_p , with *G* compact, hence Baire, does not contain infinite compact sets.
- **B.** Let G be a **totally bounded Baire group**. In 2012, Bruguera and Tkachenko (=[BT]) proved (a) that \hat{G}_p does not contain non-trivial convergent sequences, and (b) if G satisfies **the open refinement condition**, then \hat{G}_p does not contain infinite compact sets.
- **C.** In 2017, Chasco, Domínguez and Tkachenko (=[CDT]) proved that \widehat{G}_p , with G a **totally bounded**, **bounded torsion**, **Baire group**, does not contain infinite compact sets. Then, they ask 'Can there be infinite compacts in the dual space of a Baire and totally bounded group?'.

ヘロア 人間 アメヨア 人口 ア

Some history

- **A.** In 1955, Leptin proved that \widehat{G}_p , with *G* **compact**, hence Baire, does not contain infinite compact sets.
- **B.** Let G be a **totally bounded Baire group**. In 2012, Bruguera and Tkachenko (=[BT]) proved (a) that \hat{G}_p does not contain non-trivial convergent sequences, and (b) if G satisfies **the open refinement condition**, then \hat{G}_p does not contain infinite compact sets.
- **C.** In 2017, Chasco, Domínguez and Tkachenko (=[CDT]) proved that \widehat{G}_{p} , with G a **totally bounded**, **bounded torsion**, **Baire group**, does not contain infinite compact sets. Then, they ask 'Can there be infinite compacts in the dual space of a Baire and totally bounded group?'.
- **D.** In 2021, Außenhofer and Dikranjan (=[AD]) proved that \widehat{G}_p , with G a **totally bounded**, **torsion**, **Baire group**, does not contain infinite compact sets.

Some history

- **A.** In 1955, Leptin proved that \widehat{G}_p , with *G* **compact**, hence Baire, does not contain infinite compact sets.
- **B.** Let G be a **totally bounded Baire group**. In 2012, Bruguera and Tkachenko (=[BT]) proved (a) that \hat{G}_p does not contain non-trivial convergent sequences, and (b) if G satisfies **the open refinement condition**, then \hat{G}_p does not contain infinite compact sets.
- **C.** In 2017, Chasco, Domínguez and Tkachenko (=[CDT]) proved that \widehat{G}_{p} , with G a **totally bounded**, **bounded torsion**, **Baire group**, does not contain infinite compact sets. Then, they ask 'Can there be infinite compacts in the dual space of a Baire and totally bounded group?'.
- **D.** In 2021, Außenhofer and Dikranjan (=[AD]) proved that \widehat{G}_p , with G a **totally bounded**, **torsion**, **Baire group**, does not contain infinite compact sets.

(日)

3

Sac

Table of contents

- Groups \mathbb{T} and G
- Finite-open topology and totally bounded groups
- Totally bounded groups and Baire groups
- - Main Problem
 - Some history
- 3 Main Theorem
 - Some topology
 - Some algebra
 - Proof of the Main Theorem

Some topology

Definition 1

A space is said to be **scattered** if each of its subspaces has an isolated point.

Lemma 1

A compact infinite space K that is *scattered* contains a non-trivial convergent sequence.

SQR

Some topology

Definition 1

A space is said to be **scattered** if each of its subspaces has an isolated point.

Lemma 1

A compact infinite space K that is *scattered* contains a non-trivial convergent sequence.

Lemma 2

A compact infinite space K that is not scattered contains a closed subspace L such that L has a countable cover $\{V_n\}$ of open sets, each of cardinality $\geq c$, such that for every open set V of L there is n_0 with $V_{n_0} \subseteq V$.

イロト イボト イヨト イヨト

Some topology

Definition 1

A space is said to be **scattered** if each of its subspaces has an isolated point.

Lemma 1

A compact infinite space K that is *scattered* contains a non-trivial convergent sequence.

Lemma 2

A compact infinite space K that is not scattered contains a closed subspace L such that L has a countable cover $\{V_n\}$ of open sets, each of cardinality $\geq c$, such that for every open set V of L there is n_0 with $V_{n_0} \subseteq V$.

nar

◆ロト ◆部ト ◆注ト ◆注ト

Some algebra

Definition 2

A non-empty subset A of a group G is said to be **independent**, if whenever $x_1, ..., x_n \in A$ and $k_1, ..., k_n \in \mathbb{Z}$, then $k_1x_1 + \cdots + k_nx_n = 0 \implies k_1x_1 = \cdots = k_nx_n = 0.$

Let G be a MAP group such that \widehat{G}_p is Baire.

イロト イボト イヨト イヨト

Some algebra

Definition 2

A non-empty subset A of a group G is said to be **independent**, if whenever $x_1, ..., x_n \in A$ and $k_1, ..., k_n \in \mathbb{Z}$, then $k_1x_1 + \cdots + k_nx_n = 0 \implies k_1x_1 = \cdots = k_nx_n = 0.$

Let G be a MAP group such that \widehat{G}_p is Baire.

Lemma 3

If $K \subseteq G$ is compact, then K is finite or contains an uncountable independent subset.

Some algebra

Definition 2

A non-empty subset A of a group G is said to be **independent**, if whenever $x_1, ..., x_n \in A$ and $k_1, ..., k_n \in \mathbb{Z}$, then $k_1x_1 + \cdots + k_nx_n = 0 \implies k_1x_1 = \cdots = k_nx_n = 0.$

Let G be a MAP group such that \widehat{G}_p is Baire.

Lemma 3

If $K \subseteq G$ is compact, then K is finite or contains an uncountable independent subset.

Lemma 4

Let $A \subseteq G$ be an infinite independent subset. Then for any sequence $\{I_k\}_{k<\omega}$ of open subsets in \mathbb{T} such that each I_k contains at least one *n*-root of the unity, for all $2 \leq n < \omega$, the set $N := \{\chi \in \widehat{G} : \exists \{x_k\}_{k<\omega} \subseteq A : \chi(x_k) \in I_k \ \forall k < \omega\}$ is a dense G_{δ} subset of \widehat{G}_p .

Some algebra

Definition 2

A non-empty subset A of a group G is said to be **independent**, if whenever $x_1, ..., x_n \in A$ and $k_1, ..., k_n \in \mathbb{Z}$, then $k_1x_1 + \cdots + k_nx_n = 0 \implies k_1x_1 = \cdots = k_nx_n = 0.$

Let G be a MAP group such that \widehat{G}_p is Baire.

Lemma 3

If $K \subseteq G$ is compact, then K is finite or contains an uncountable independent subset.

Lemma 4

Let $A \subseteq G$ be an infinite independent subset. Then for any sequence $\{I_k\}_{k<\omega}$ of open subsets in \mathbb{T} such that each I_k contains at least one *n*-root of the unity, for all $2 \leq n < \omega$, the set $N := \{\chi \in \widehat{G} : \exists \{x_k\}_{k<\omega} \subseteq A : \chi(x_k) \in I_k \ \forall k < \omega\}$ is a dense G_{δ} subset of \widehat{G}_p .

Main Theorem

Theorem 1

Let G be a totally bounded abelian Baire group. Then every compact subset of \hat{G}_p is finite.

Sar

<ロト < 回 > < 回 > < 回 > < 回 >

Let K be an infinite compact set in the dual group and assume that K is not scattered WLOG.

• $I_{2m} := (-1/8, 1/8), I_{2m+1} := (-1/2, -1/4) \cup (1/4, 1/2].$

= 900

・ロト ・ 同ト ・ ヨト ・ ヨト

Let K be an infinite compact set in the dual group and assume that K is not scattered WLOG.

•
$$I_{2m} := (-1/8, 1/8), I_{2m+1} := (-1/2, -1/4) \cup (1/4, 1/2].$$

• By Lemma 2, there is $\emptyset \neq L \subseteq K$ closed and an open countable cover $\{V_n\}$ such that every open subset in L contains an element of the open cover. Define

$$S_n = \{ f \in \widehat{G}_p : \exists \{ x_{nk} \}_{k < \omega} \subseteq V_n, \text{ with } f(x_{n,k}) \in I_k \ \forall k < \omega \}.$$

イロト イヨト イヨト

Let K be an infinite compact set in the dual group and assume that K is not scattered WLOG.

•
$$I_{2m} := (-1/8, 1/8), I_{2m+1} := (-1/2, -1/4) \cup (1/4, 1/2].$$

• By Lemma 2, there is $\emptyset \neq L \subseteq K$ closed and an open countable cover $\{V_n\}$ such that every open subset in L contains an element of the open cover. Define

$$S_n = \{ f \in \widehat{G}_p : \exists \{ x_{nk} \}_{k < \omega} \subseteq V_n, \text{ with } f(x_{n,k}) \in I_k \ \forall k < \omega \}.$$

• Each V_n contains a compact subset of cardinality $\geq \mathfrak{c}$ $\Rightarrow \exists A_n \subseteq V_n$ uncountable independent $\forall n < \omega$ by (Lemma 3) $\Rightarrow S_n$ contains a dense G_{δ} subset of $\widehat{G}_p \ \forall n < \omega$ (Lemma 4).

イロト イヨト イヨト

Let K be an infinite compact set in the dual group and assume that K is not scattered WLOG.

•
$$I_{2m} := (-1/8, 1/8), I_{2m+1} := (-1/2, -1/4) \cup (1/4, 1/2].$$

• By Lemma 2, there is $\emptyset \neq L \subseteq K$ closed and an open countable cover $\{V_n\}$ such that every open subset in L contains an element of the open cover. Define

$$S_n = \{ f \in \widehat{G}_p : \exists \{ x_{nk} \}_{k < \omega} \subseteq V_n, \text{ with } f(x_{n,k}) \in I_k \ \forall k < \omega \}.$$

• Each V_n contains a compact subset of cardinality $\geq c$ $\Rightarrow \exists A_n \subseteq V_n$ uncountable independent $\forall n < \omega$ by (Lemma 3) $\Rightarrow S_n$ contains a dense G_{δ} subset of $\widehat{G}_p \ \forall n < \omega$ (Lemma 4).

nac

イロト イヨト イヨト

Since the group \widehat{G}_p is Baire, we have

- $\bigcap_{n=1}^{\infty} S_n$ contains a dense G_{δ} subset of $\widehat{G}_p \Rightarrow \exists \phi \in \bigcap_{n=1}^{\infty} S_n$.
- Let $w \in L$ and set $U = \{t \in \mathbb{T} : |t \phi(w)| < 1/16\}$

メロト メロト メヨト メヨト

Since the group \widehat{G}_p is Baire, we have

- $\bigcap_{n=1}^{\infty} S_n$ contains a dense G_{δ} subset of $\widehat{G}_p \Rightarrow \exists \phi \in \bigcap_{n=1}^{\infty} S_n$.
- Let $w \in L$ and set $U = \{t \in \mathbb{T} : |t \phi(w)| < 1/16\}$

By Lemma 2, there is $V_{n_0} \subseteq \phi^{-1}[U] \cap L$.

Sac

ヘロア 人間 アメヨア 人口 ア

Since the group \widehat{G}_p is Baire, we have

- $\bigcap_{n=1}^{\infty} S_n$ contains a dense G_{δ} subset of $\widehat{G}_p \Rightarrow \exists \phi \in \bigcap_{n=1}^{\infty} S_n$.
- Let $w \in L$ and set $U = \{t \in \mathbb{T} : |t \phi(w)| < 1/16\}$

By Lemma 2, there is $V_{n_0} \subseteq \phi^{-1}[U] \cap L$.

We deduce

 $1/8 < |\phi(x_{n_0,0}) - \phi(x_{n_0,1})| \le |\phi(x_{n_0,0}) - \phi(w)| + |\phi(w) - \phi(x_{n_0,1})| < 1/8\#.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Since the group \widehat{G}_p is Baire, we have

- $\bigcap_{n=1}^{\infty} S_n$ contains a dense G_{δ} subset of $\widehat{G}_p \Rightarrow \exists \phi \in \bigcap_{n=1}^{\infty} S_n$.
- Let $w \in L$ and set $U = \{t \in \mathbb{T} : |t \phi(w)| < 1/16\}$

By Lemma 2, there is $V_{n_0} \subseteq \phi^{-1}[U] \cap L$.

We deduce

$$1/8 < |\phi(x_{n_0,0}) - \phi(x_{n_0,1})| \le |\phi(x_{n_0,0}) - \phi(w)| + |\phi(w) - \phi(x_{n_0,1})| < 1/8\#.$$

Sac

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

Table of contents

Definitions

- Groups \mathbb{T} and \widehat{G}
- Finite-open topology and totally bounded groups
- Totally bounded groups and Baire groups
- 2 Main Problem
 - Main Problem
 - Some history
- 3 Main Theorem
 - Some topology
 - Some algebra
 - Proof of the Main Theorem

4 Applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A new class of g-barrelled groups

- Following [CMT]:=Chasco, Martín-Peinador, and Tarieladze (1999), we say that a topological abelian group G is g-barrelled if every compact subset of G_p is equicontinuous.
- As a consequence of our Main Theorem, we identify a new class of g-barrelled groups, namely, totally bounded Baire groups. Compare with the thorough study of g-barrelled groups in [AD].

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A new class of g-barrelled groups

- Following [CMT]:=Chasco, Martín-Peinador, and Tarieladze (1999), we say that a topological abelian group G is g-barrelled if every compact subset of G_p is equicontinuous.
- As a consequence of our Main Theorem, we identify a new class of g-barrelled groups, namely, totally bounded Baire groups. Compare with the thorough study of g-barrelled groups in [AD].
- Every totally bounded Baire group is a Mackey group. Since every *g*-barrelled locally quasi-convex Hausdorff group is a Mackey group [CMT].

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A new class of g-barrelled groups

- Following [CMT]:=Chasco, Martín-Peinador, and Tarieladze (1999), we say that a topological abelian group G is g-barrelled if every compact subset of G_p is equicontinuous.
- As a consequence of our Main Theorem, we identify a new class of g-barrelled groups, namely, totally bounded Baire groups. Compare with the thorough study of g-barrelled groups in [AD].
- Every totally bounded Baire group is a Mackey group. Since every *g*-barrelled locally quasi-convex Hausdorff group is a Mackey group [CMT].

g-dense groups

Definition 3 (Def. 5.4.1 in [AD])

Let K be a topological group and $u = (u_n)$ be a sequence in \widehat{K} . Let

$$s_u(K) := \{x \in K : \lim_n u_n(x) = 0 \text{ in } \mathbb{T}\}.$$

A subgroup G of K is called:

- characterizable, if there exists $u = (u_n)$ in \widehat{K} such that $G = s_u(K)$;
- g-closed, if G is the intersection of characterizable subgroups of K;
- g-dense, if $G \subseteq s_u(K)$ for some $u = (u_n)$ in \widehat{K} yields $s_u(K) = K$.

g-dense doesn't imply g-barrelled

Aussenhofer and Dikranjan ask [AD] (Question 11.3.3) whether every totally bounded group G that is g-dense in its completion must be a g-barrelled group.

Corollary 1

Set $\omega^* := \beta \omega \setminus \omega$. The group $C_p(\omega^*, \mathbb{T})$ is g-dense in its completion but is not g-barrelled.

g-dense doesn't imply g-barrelled

Aussenhofer and Dikranjan ask [AD] (Question 11.3.3) whether every totally bounded group G that is g-dense in its completion must be a g-barrelled group.

Corollary 1

Set $\omega^* := \beta \omega \setminus \omega$. The group $C_p(\omega^*, \mathbb{T})$ is g-dense in its completion but is not g-barrelled.

More results involving C_p-theory

The following is a collection of results that follow from the main Theorem. We mention them without providing too much detail.

- If X is a μ-space containing an infinite compact subspace, then C_p(X, T) is not Baire. In particular, this is the case if X is compact and infinite.
- If K is a compact zero-dimensional space that is not scattered, then C_p(K, {0,1}), is not Baire. (Roman Pol originally communicated this and its proof in a private email.)

More results involving C_p-theory

The following is a collection of results that follow from the main Theorem. We mention them without providing too much detail.

- If X is a μ-space containing an infinite compact subspace, then C_p(X, T) is not Baire. In particular, this is the case if X is compact and infinite.
- If K is a compact zero-dimensional space that is not scattered, then C_p(K, {0,1}), is not Baire. (Roman Pol originally communicated this and its proof in a private email.)
- If C_p(X, [0, 1]) is Baire, then (a) C_p(X, T) is also Baire, hence (b) X cannot have infinite compact subsets.

More results involving C_p-theory

The following is a collection of results that follow from the main Theorem. We mention them without providing too much detail.

- If X is a μ-space containing an infinite compact subspace, then C_p(X, T) is not Baire. In particular, this is the case if X is compact and infinite.
- If K is a compact zero-dimensional space that is not scattered, then C_p(K, {0,1}), is not Baire. (Roman Pol originally communicated this and its proof in a private email.)
- If C_p(X, [0, 1]) is Baire, then (a) C_p(X, T) is also Baire, hence (b) X cannot have infinite compact subsets.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト - ヨ - -

SQC

Reflexivity

Definition 4

A topological group is said to be **reflexive** if the evaluation map $e: G \to (\widehat{G}_k)_k$ is a topological isomorphism, where the duals are equipped with the compact-open topology.

This is the topology used in the Pontryagin-van Kampen Theorem for LCAGs.

 Pseudocompact groups without infinite compact subsets are reflexive (Ardanza-Trevijano, Chasco, Domínguez, and Tkachenko, 2012) and (Galindo and Macario, 1999)

Definition 4

A topological group is said to be **reflexive** if the evaluation map $e: G \to (\widehat{G}_k)_k$ is a topological isomorphism, where the duals are equipped with the compact-open topology.

- Pseudocompact groups without infinite compact subsets are reflexive (Ardanza-Trevijano, Chasco, Domínguez, and Tkachenko, 2012) and (Galindo and Macario, 1999)
- Totally bounded Baire groups without infinite compact subsets are reflexive if satisfying the Open Refinement Condition [BT].

Definition 4

A topological group is said to be **reflexive** if the evaluation map $e: G \to (\widehat{G}_k)_k$ is a topological isomorphism, where the duals are equipped with the compact-open topology.

- Pseudocompact groups without infinite compact subsets are reflexive (Ardanza-Trevijano, Chasco, Domínguez, and Tkachenko, 2012) and (Galindo and Macario, 1999)
- Totally bounded Baire groups without infinite compact subsets are reflexive if satisfying the Open Refinement Condition [BT].
- Bounded torsion totally bounded Baire groups without infinite compact subsets are reflexive. [CDT]

Definition 4

A topological group is said to be **reflexive** if the evaluation map $e: G \to (\widehat{G}_k)_k$ is a topological isomorphism, where the duals are equipped with the compact-open topology.

- Pseudocompact groups without infinite compact subsets are reflexive (Ardanza-Trevijano, Chasco, Domínguez, and Tkachenko, 2012) and (Galindo and Macario, 1999)
- Totally bounded Baire groups without infinite compact subsets are reflexive if satisfying the Open Refinement Condition [BT].
- Bounded torsion totally bounded Baire groups without infinite compact subsets are reflexive. [CDT]
- Torsion totally bounded Baire groups without infinite compact subsets are reflexive. [AD]

Definition 4

A topological group is said to be **reflexive** if the evaluation map $e: G \to (\widehat{G}_k)_k$ is a topological isomorphism, where the duals are equipped with the compact-open topology.

- Pseudocompact groups without infinite compact subsets are reflexive (Ardanza-Trevijano, Chasco, Domínguez, and Tkachenko, 2012) and (Galindo and Macario, 1999)
- Totally bounded Baire groups without infinite compact subsets are reflexive if satisfying the Open Refinement Condition [BT].
- Bounded torsion totally bounded Baire groups without infinite compact subsets are reflexive. [CDT]
- Torsion totally bounded Baire groups without infinite compact subsets are reflexive. [AD]

Reflexivity

The following extends these results.

Corollary 2

A totally bounded Baire group G without infinite compact subsets is reflexive.

Proof: By the Comfort-Ross Theorem, *G* has the weak topology generated by \widehat{G} , *i. e.*, *G* is topologically isomorphic to $(\widehat{G_p})_p$. Furthermore, since *G* contains no infinite compact subsets, the compact-open topology on the dual group \widehat{G} coincides with the finite-open topology. Hence, it follows that *G* is Pontryagin reflexive.

Some references

- Ardanza-Trevijano, S., Chasco, M. J., Domínguez, X. and Tkachenko, M. G., Precompact non-compact reflexive Abelian groups, Forum Math. 24 (2) (2012) 289-302.
- Au β enhofer L., and Dikranjan, D., *Mackey groups and Mackey* topologies, Dissertationes Mathematicae 567 (2021), 1-141.
- Bruguera, M, and Tkachenko, M., Pontryagin duality in the class of precompact Abelian groups and the Baire property, Journal of Pure and Applied Algebra, 216 (2012) 2636-2647.
- Chasco, M. J., Martín Peinador, E., and Tarieladze, V., On Mackey Topology for groups, Stud. Math. 132, No.3, (1999) 257-284.
- Comfort, W. W., and Ross, K. A., *Topologies induced by groups of* characters, Fundamenta Mathematicae, 55, (1964), 283-291
- Ferrer, M.V., Hernández, S., and Tkachenko, M., On convergent sequences in dual groups, RACSAM 114, 71 (2020).

Some references

- Galindo, J. and Hernández, S., The concept of boundedness and the Bohr compactification of a MAP Abelian group, Fund. Math. 159 (1999), no. 3, 195218. 159 (1999)
- Galindo, J. and Hernández, S., Pontryagin-van Kampen reflexivity for free Abelian topological groups, Forum Math. 11 (1999), 399-415.
- Galindo, J., and Macario, S., Pseudocompact group topologies with no infinite compact subsets, J. Pure Appl. Algebra 215 (4) (2011) 655-663

Hart, J. E., and Kunen, K., Limits in compact Abelian groups, Topology and its Applications 153 (2006), 991–1002.

Mrowka, S., Rajagopalan, M., and Soundararajan, T., A characterization of compact scattered spaces through chain limits, TOPO 72 – General Topology and its Applications, Lecture Notes in Mathematics 378 (1974), 288-297.

V. Mykhaylyuk and R. Pol, On a problem of Talagrand concerning separately continuous functions, J. Inst. Math. Jussieu, 20, no 5, = Sar Isabel Sepúlveda (UJI) Applications

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

For full proofs and references, the reader is invited to see the preprint in ArXiV. Thank you very much for your attention.

The Baire property and precompact duality

Isabel Sepúlveda

Universitat Jaume I, Castellón de la Plana isepulve@uji.es

SUMMER CONFERENCE ON TOPOLOGY AND ITS APPLICATIONS

July 2024

This is joint work with Professors María Vicenta Ferrer (*Universitat Jaume I*), Salvador Hernández (*Universitat Jaume I*), and F. Javier Trigos-Arrieta (*California State University*).

<□▶ <四▶ < 注▶ < 注▶ < 注▶ = 注