Persistent Properties in Uniform Box Products

Jocelyn Bell

Hobart and William Smith Colleges

(ロ)、(型)、(E)、(E)、 E) のQ(()

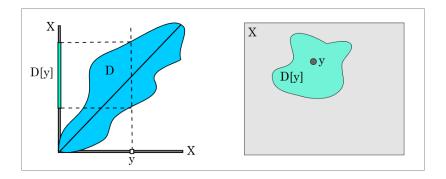
All spaces are Hausdorff

All spaces are Hausdorff

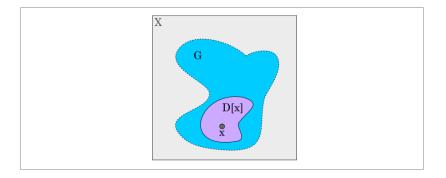
Most will also be uniform

◆□ → < @ → < ≥ → < ≥ → < ≥ → < </p>

A Diagonal Uniformity on a Set X A collection \mathbb{D} of entourages of the diagonal of $X \times X$



The Uniform Topology on X A set G is open if for all $x \in G$ there is $D \in \mathbb{D}$ with $D[x] \subseteq G$



◆□> < @> < E> < E> < E > < 0 < 0</p>

The Uniformity of Uniform Convergence

A uniformity on a space of functions

Definition

(Bourbaki, 1949). Suppose (X, \mathbb{D}) is a uniform space, Y is a topological space, and X^Y is the set of all continuous functions $Y \to X$

The Uniformity of Uniform Convergence

A uniformity on a space of functions

Definition

(Bourbaki, 1949). Suppose (X, \mathbb{D}) is a uniform space, Y is a topological space, and X^Y is the set of all continuous functions $Y \to X$

For every $D\in\mathbb{D}$, define an entourage \overline{D} of the diagonal of $X^Y imes X^Y$ by

 $\overline{D} = \{(f,g): (f(x),g(x)) \in D \text{ for all } x \in Y\}$

The Uniformity of Uniform Convergence

A uniformity on a space of functions

Definition

(Bourbaki, 1949). Suppose (X, \mathbb{D}) is a uniform space, Y is a topological space, and X^Y is the set of all continuous functions $Y \to X$

For every $D\in\mathbb{D}$, define an entourage \overline{D} of the diagonal of $X^Y imes X^Y$ by

$$\overline{D} = \{(f,g): (f(x),g(x)) \in D \text{ for all } x \in Y\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Then $\{\overline{D}: D \in \mathbb{D}\}$ is a uniformity on the set X^Y called the uniformity of uniform convergence

Uniform Box Product

A specific uniformity of uniform convergence

Definition

(Williams, 2001) Suppose (X, \mathbb{D}) is a uniform space. The set $X^{\mathbb{N}}$ with the uniform topology generated by the uniformity of uniform convergence is called the **uniform box product** of (X, \mathbb{D}) . We will use the notation

 $(X,\mathbb{D})^{\mathbb{N}}$

Uniform Box Product

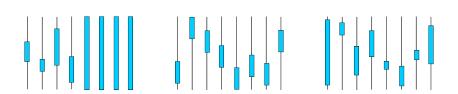
A specific uniformity of uniform convergence

Definition

(Williams, 2001) Suppose (X, \mathbb{D}) is a uniform space. The set $X^{\mathbb{N}}$ with the uniform topology generated by the uniformity of uniform convergence is called the **uniform box product** of (X, \mathbb{D}) . We will use the notation

 $(X,\mathbb{D})^{\mathbb{N}}$

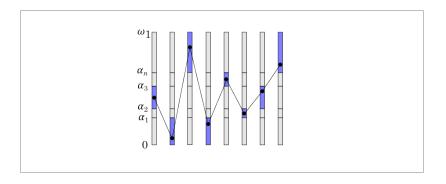
Why the name?



▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Uniform Box Product of $[0, \omega_1]$

A neighborhood of a point in this product



The choice of uniformity matters!

Consider the discrete space $\mathbb N$

The choice of uniformity matters!

Consider the discrete space $\ensuremath{\mathbb{N}}$

1. Let \mathbb{D}_1 be the uniformity of all subsets of $\mathbb{N}\times\mathbb{N}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \blacktriangleright So the diagonal riangle is in \mathbb{D}_1

The choice of uniformity matters!

Consider the discrete space $\ensuremath{\mathbb{N}}$

1. Let \mathbb{D}_1 be the uniformity of all subsets of $\mathbb{N}\times\mathbb{N}$

 \blacktriangleright So the diagonal riangle is in \mathbb{D}_1

- 2. Let \mathbb{D}_2 be the uniformity inherited from the one-point compactification of $\mathbb N$
 - ▶ A base for this uniformity is squares of finite open covers of $\mathbb{N} \cup \{\infty\}$ restricted to $\mathbb{N} \times \mathbb{N}$

The choice of uniformity matters!

Consider the discrete space $\ensuremath{\mathbb{N}}$

- 1. Let \mathbb{D}_1 be the uniformity of all subsets of $\mathbb{N}\times\mathbb{N}$
 - \blacktriangleright So the diagonal riangle is in \mathbb{D}_1
- 2. Let \mathbb{D}_2 be the uniformity inherited from the one-point compactification of $\mathbb N$
 - ▶ A base for this uniformity is squares of finite open covers of $\mathbb{N} \cup \{\infty\}$ restricted to $\mathbb{N} \times \mathbb{N}$

Then $(\mathbb{N}, \mathbb{D}_1)^{\mathbb{N}}$ is discrete, while $(\mathbb{N}, \mathbb{D}_2)^{\mathbb{N}}$ is not.

Persistent Properties in Products Which properties persist in each of the three products?

If X is a space with a certain property, does $X^{\mathbb{N}}$ also have the property?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Persistent Properties in Products

Which properties persist in each of the three products?

If X is a space with a certain property, does $X^{\mathbb{N}}$ also have the property?

 For example, finite powers of a normal space need not be normal

Nor even pseudonormal

Persistent Properties in Products

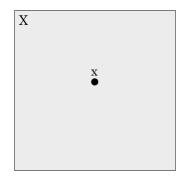
Which properties persist in each of the three products?

If X is a space with a certain property, does $X^{\mathbb{N}}$ also have the property?

 For example, finite powers of a normal space need not be normal

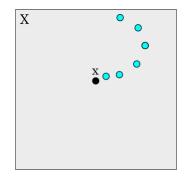
- Nor even pseudonormal
- But some properties are preserved . . .

Arhangel'skii's α_2 property Fix a point x in a space X



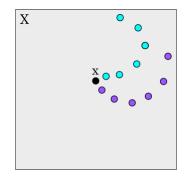
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

And a countable collection of sequences all converging to x



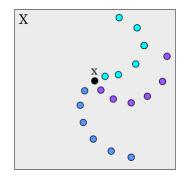
▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

And a countable collection of sequences all converging to x



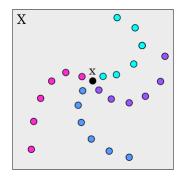
▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

And a countable collection of sequences all converging to x



▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

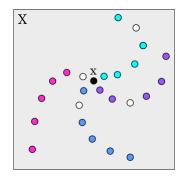
And a countable collection of sequences all converging to x



・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Arhangel'skii's α_2 property Can you always find a "diagonal" sequence also converging to x?



イロト イヨト イヨト

э

α_2 points and α_2 spaces

Definition

(Arhangel'skii, 1972).¹ Let X be a space and $x \in X$. The point x is an α_2 -point if for every countable collection of sequences S_1, S_2, \ldots converging to x,

α_2 points and α_2 spaces

Definition

(Arhangel'skii, 1972).¹ Let X be a space and $x \in X$. The point x is an α_2 -point if for every countable collection of sequences S_1, S_2, \ldots converging to x, there is a sequence A converging to x so that for each n,

 $\operatorname{ran} A \cap \operatorname{ran} S_n \neq \emptyset$

¹Initially called α_5 , but $\alpha_5 = \alpha_2$ was shown by Nogura in 1985 as $\alpha_5 = \alpha_2 \otimes \alpha_{\odot}$

α_2 points and α_2 spaces

Definition

(Arhangel'skii, 1972).¹ Let X be a space and $x \in X$. The point x is an α_2 -point if for every countable collection of sequences S_1, S_2, \ldots converging to x, there is a sequence A converging to x so that for each n,

 $\operatorname{ran} A \cap \operatorname{ran} S_n \neq \emptyset$

If every point of X is an α_2 -point, then X is an α_2 -space.

¹Initially called α_5 , but $\alpha_5 = \alpha_2$ was shown by Nogura in 1985 as $\alpha_5 = \alpha_2 \otimes \alpha_{\odot}$

Products of α_2 spaces This property is persistent

Theorem (Nogura, 1985). A product of countably many α_2 spaces is an α_2 space.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Products of α_2 spaces This property is persistent

Theorem

(Nogura, 1985). A product of countably many α_2 spaces is an α_2 space.

But the proof does not extend to our other products because . . .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convergence!

Different products, different conditions for convergence

- Product topology: point-wise convergence
- Uniform box topology: uniform convergence
- Box topology: "uniformly equivalent" convergence

Box products of α_2 spaces Does the property persist?

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ○ 国 ○ の Q @

Box products of α_2 spaces Does the property persist?

No! $[0,\omega]^{\mathbb{N}}$ with the box topology is not $lpha_2$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Box products of α_2 spaces Does the property persist?

No! $[0, \omega]^{\mathbb{N}}$ with the box topology is not α_2

For each n, consider the sequence S_n = ⟨a₁ⁿ, a₂ⁿ, ...⟩ converging to (ω, ω, ...) defined by

$$a_i^n(j) = egin{cases} i & ext{if } j \leq n \ \omega & ext{if } j > n \end{cases}$$

Box products of α_2 spaces Does the property persist?

No! $[0,\omega]^{\mathbb{N}}$ with the box topology is not α_2

For each n, consider the sequence S_n = (a₁ⁿ, a₂ⁿ, ...) converging to (ω, ω, ...) defined by

$$a_i^n(j) = egin{cases} i & ext{if } j \leq n \ \omega & ext{if } j > n \end{cases}$$

A box product of infinitely many spaces that each have non-trivial convergent sequences cannot be α₂

Uniform box products of α_2 spaces Does the property persist?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Uniform box products of α_2 spaces Does the property persist?

I don't know. But:

Uniform box products of α_2 spaces Does the property persist?

I don't know. But:

Theorem

If X is an ordinal space and \mathbb{D} is the uniformity on X inherited from the one-point compactification of X, then $(X, \mathbb{D})^{\mathbb{N}}$ is an α_2 space.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Uniform box products of α_2 spaces Does the property persist?

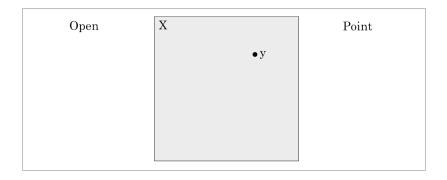
l don't know. But:

Theorem

If X is an ordinal space and \mathbb{D} is the uniformity on X inherited from the one-point compactification of X, then $(X, \mathbb{D})^{\mathbb{N}}$ is an α_2 space.

The proof involves a topological game, related to and inspired by Gruenhage's W-game.

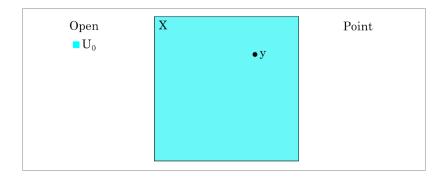
Gruenhage's W-game Fix a point y in a topological space X



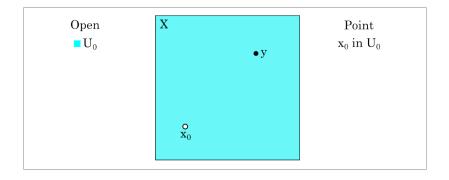
シックシード (中下・4回・4日)

Gruenhage's W-game

Open chooses an open set U_0 (usually the whole space initially) containing y



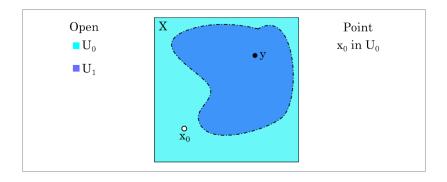
Gruenhage's W-game Point chooses any $x_0 \in U_0$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gruenhage's W-game

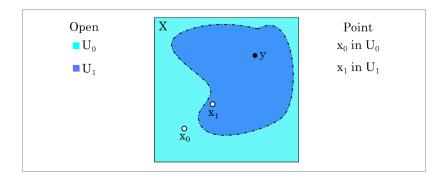
Open chooses an open set U_1 containing y



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

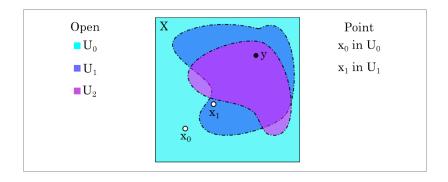
${\sf Gruenhage's}\ {\sf W}\text{-}{\sf game}$

Point responds with any $x_1 \in U_1$



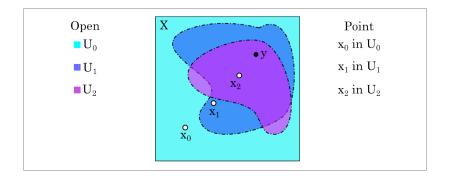
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Gruenhage's W-game Open chooses open U_2 containing y



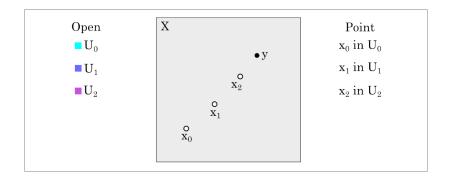
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Gruenhage's W-game Point chooses any $x_2 \in U_2$ and the game continues



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Winning Gruenhage's W-game Open wins the game if Point's choices converge to y



Definition

(Gruenhage) A point $x \in X$ is a *W*-point if the first player has a winning strategy in the *W*-game at x. A space X is a *W*-space if every point of X is a *W*-point.

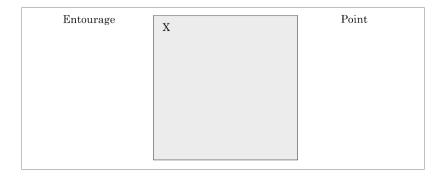
Definition

(Gruenhage) A point $x \in X$ is a *W*-point if the first player has a winning strategy in the *W*-game at x. A space X is a *W*-space if every point of X is a *W*-point.

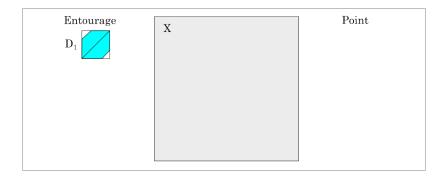
Theorem

(Gruenhage) A product of countably many W-spaces is a W-space, and every W-space is an α_2 -space.

Proximal Game Suppose (X, \mathbb{D}) is a uniform space

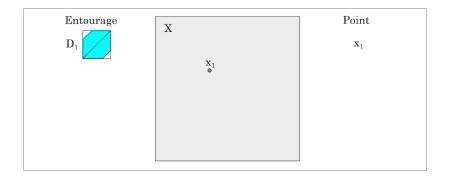


Entourage moves first and chooses any element of $\ensuremath{\mathbb{D}}$

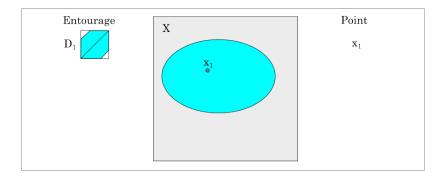


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

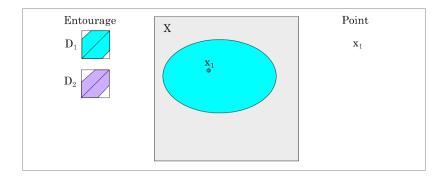
Point responds with any $x_1 \in X$. . .



. . . knowing he will be stuck choosing from $D_1[x_1]$ in the next round

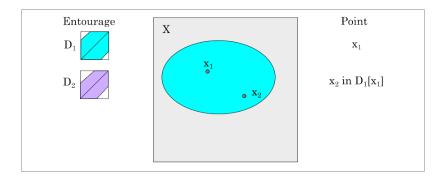


Proximal Game Entourage chooses any $D_2 \in \mathbb{D}$

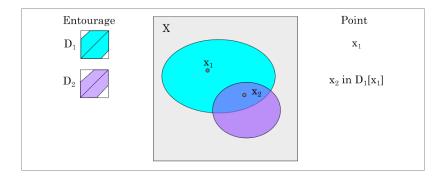


◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

And Point chooses any $x_2 \in D_1[x_1]$...

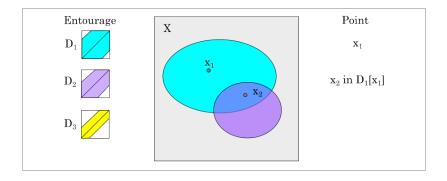


. . . knowing he will be stuck in $D_2[x_2]$ in the next round



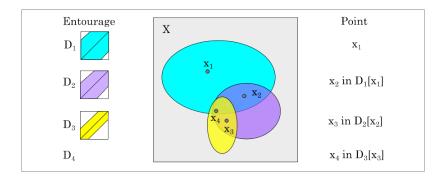
◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ◆ ● ◆ ● ◆

Proximal Game Entourage chooses any $D_3 \in \mathbb{D}$



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

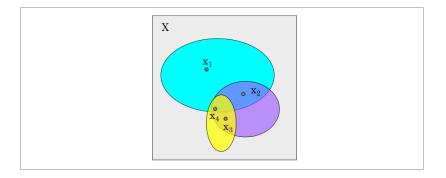
. . . and the game continues



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Winning the Proximal Game

Entourage wins the game if Point's choices form a convergent sequence



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

(B.) A uniform space (X, \mathbb{D}) is **proximal** if Entourage has a winning strategy in the proximal game.

Definition

(B.) A uniform space (X, \mathbb{D}) is **proximal** if Entourage has a winning strategy in the proximal game.

 Proximal spaces are W-spaces, collectionwise normal, countably paracompact, and a product of countably many proximal spaces is proximal (B.)

Definition

(B.) A uniform space (X, \mathbb{D}) is **proximal** if Entourage has a winning strategy in the proximal game.

 Proximal spaces are W-spaces, collectionwise normal, countably paracompact, and a product of countably many proximal spaces is proximal (B.)

 A compact space is proximal if and only if it is Corson compact (Clontz & Gruenhage)

Definition

(B.) A uniform space (X, \mathbb{D}) is **proximal** if Entourage has a winning strategy in the proximal game.

- Proximal spaces are W-spaces, collectionwise normal, countably paracompact, and a product of countably many proximal spaces is proximal (B.)
- A compact space is proximal if and only if it is Corson compact (Clontz & Gruenhage)
- The uniform box product of a compact proximal space is proximal (Hernandez-Gutierrez & Szeptycki)

Definition

(B.) A uniform space (X, \mathbb{D}) is **proximal** if Entourage has a winning strategy in the proximal game.

- Proximal spaces are W-spaces, collectionwise normal, countably paracompact, and a product of countably many proximal spaces is proximal (B.)
- A compact space is proximal if and only if it is Corson compact (Clontz & Gruenhage)
- The uniform box product of a compact proximal space is proximal (Hernandez-Gutierrez & Szeptycki)
- ▶ But $[0, \omega_1]$ is not proximal . . . so we'll need something else

A modification of the proximal game

Definition

(B.) Suppose (X, \mathbb{D}) is a uniform space and $S \subseteq X$. X is S-proximal provided Entourage has a winning strategy in the proximal game, where Point is subject to the additional condition that his choices must be elements of S.

A modification of the proximal game

Definition

(B.) Suppose (X, \mathbb{D}) is a uniform space and $S \subseteq X$. X is S-proximal provided Entourage has a winning strategy in the proximal game, where Point is subject to the additional condition that his choices must be elements of S.

A uniform space (X, \mathbb{D}) is ω -proximal if X is S-proximal for every countable subset S of X.

A modification of the proximal game

Definition

(B.) Suppose (X, \mathbb{D}) is a uniform space and $S \subseteq X$. X is S-proximal provided Entourage has a winning strategy in the proximal game, where Point is subject to the additional condition that his choices must be elements of S.

A uniform space (X, \mathbb{D}) is ω -proximal if X is S-proximal for every countable subset S of X.

An ω -proximal space is pseudonormal and α_2 , and countable products of ω -proximal spaces are ω -proximal (B.)

A modification of the proximal game

Definition

(B.) Suppose (X, \mathbb{D}) is a uniform space and $S \subseteq X$. X is S-proximal provided Entourage has a winning strategy in the proximal game, where Point is subject to the additional condition that his choices must be elements of S.

A uniform space (X, \mathbb{D}) is ω -proximal if X is S-proximal for every countable subset S of X.

An ω -proximal space is pseudonormal and α_2 , and countable products of ω -proximal spaces are ω -proximal (B.)

 $[0,\omega_1]$ is ω -proximal but not proximal, and . . .

And (very slightly) beyond ordinal spaces

Theorem

(B.) Suppose X is an ordinal space and \mathbb{D} is the uniformity on X inherited from its one-point compactification. Then $(X, \mathbb{D})^{\mathbb{N}}$ is ω -proximal (and so is both pseudonormal and α_2).

And (very slightly) beyond ordinal spaces

Theorem

(B.) Suppose X is an ordinal space and \mathbb{D} is the uniformity on X inherited from its one-point compactification. Then $(X, \mathbb{D})^{\mathbb{N}}$ is ω -proximal (and so is both pseudonormal and α_2).

The properties I actually needed were:

- 1. local compactness
 - ensures the space has a Hausdorff one-point compactification

And (very slightly) beyond ordinal spaces

Theorem

(B.) Suppose X is an ordinal space and \mathbb{D} is the uniformity on X inherited from its one-point compactification. Then $(X, \mathbb{D})^{\mathbb{N}}$ is ω -proximal (and so is both pseudonormal and α_2).

The properties I actually needed were:

- 1. local compactness
 - ensures the space has a Hausdorff one-point compactification

2. σ -compactness

And (very slightly) beyond ordinal spaces

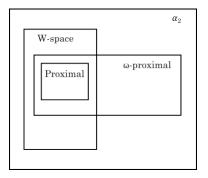
Theorem

(B.) Suppose X is an ordinal space and \mathbb{D} is the uniformity on X inherited from its one-point compactification. Then $(X, \mathbb{D})^{\mathbb{N}}$ is ω -proximal (and so is both pseudonormal and α_2).

The properties I actually needed were:

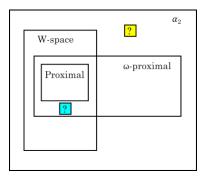
- 1. local compactness
 - ensures the space has a Hausdorff one-point compactification
- 2. σ -compactness
- 3. the closure of every countable set is countable
 - this implies the space must also be scattered and zero-dimensional

Relationships Among the Properties For uniform spaces



◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆

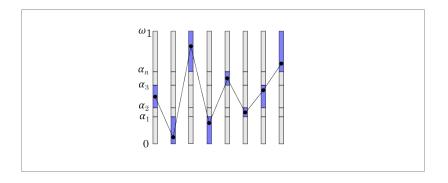
Relationships Among the Properties For uniform spaces



A Summary of Persistent Properties Which properties persist in which products if X is a uniform space?

	Tychonoff	Box	Uniform Box	+ X compact
α_2	Yes	No	?	?
ω -proximal	Yes	No	?	?
proximal	Yes	No	No	Yes
W-space	Yes	No	No	?

Obrigada! Thanks for listening!



◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ○ □ ○ ○ ○ ○