On spaces ℓ_{∞} and c_0 with the pointwise topology embedded into spaces $C_p(X)$

JERZY KAKOL

A. MICKIEWICZ UNIVERSITY, POZNAŃ

38th SUMMER CONFERENCE ON TOPOLOGY AND ITS APPLICATIONS, 8-12 JULY 2024

A (20) A (20) A (20) A

Let us recall a few results regarding Banach spaces C(X) of continuous real valued functions on a compact Hausdorff spaces X related to containing copies of the Banach spaces c_0 or ℓ_{∞} which will motivate further results on this topic but for the spaces $C_p(X)$.

・ 同 ト ・ ヨ ト ・ モ ト ・

Let us recall a few results regarding Banach spaces C(X) of continuous real valued functions on a compact Hausdorff spaces X related to containing copies of the Banach spaces c_0 or ℓ_{∞} which will motivate further results on this topic but for the spaces $C_p(X)$.

Why $C_p(X)$ -spaces?

Let us recall a few results regarding Banach spaces C(X) of continuous real valued functions on a compact Hausdorff spaces X related to containing copies of the Banach spaces c_0 or ℓ_{∞} which will motivate further results on this topic but for the spaces $C_p(X)$.

Why $C_p(X)$ -spaces?

We will see...

(4月) (3日) (3日) 日

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

 A Banach space E is a Grothendieck space if every weak*-convergent sequence in E' is weakly convergent.

伺下 イヨト イヨト

- A Banach space *E* is a **Grothendieck space** if every weak*-convergent sequence in *E'* is weakly convergent.
- O There was a conjecture: Every nonreflexive Grothendieck space should contain ℓ_∞, or at least have a quotient isomorphic to ℓ_∞.

- (11) -

- A Banach space *E* is a **Grothendieck space** if every weak*-convergent sequence in *E'* is weakly convergent.
- There was a conjecture: Every nonreflexive Grothendieck space should contain ℓ_∞, or at least have a quotient isomorphic to ℓ_∞.
- There is in ZFC a Banach space C(X) which is a Grothendieck space without a copy of ℓ_∞ (Haydon).

(四) (日) (日)

- A Banach space *E* is a **Grothendieck space** if every weak*-convergent sequence in *E'* is weakly convergent.
- There was a conjecture: Every nonreflexive Grothendieck space should contain ℓ_∞, or at least have a quotient isomorphic to ℓ_∞.
- There is in ZFC a Banach space C(X) which is a Grothendieck space without a copy of ℓ_∞ (Haydon).
- There is in ZFC compact X containing βN such that C(X) is Grothendieck without ℓ_∞ (Koszmider-Shelah).

- A Banach space *E* is a **Grothendieck space** if every weak*-convergent sequence in *E'* is weakly convergent.
- O There was a conjecture: Every nonreflexive Grothendieck space should contain ℓ_∞, or at least have a quotient isomorphic to ℓ_∞.
- There is in ZFC a Banach space C(X) which is a Grothendieck space without a copy of ℓ_∞ (Haydon).
- There is in ZFC compact X containing βN such that C(X) is Grothendieck without ℓ_∞ (Koszmider-Shelah).
- (CH) There is compact X without $\beta \mathbb{N}$ such that C(X) does not have a quotient isomorphic to ℓ_{∞} (Talagrand).

- A Banach space *E* is a **Grothendieck space** if every weak*-convergent sequence in *E'* is weakly convergent.
- There was a conjecture: Every nonreflexive Grothendieck space should contain ℓ_∞, or at least have a quotient isomorphic to ℓ_∞.
- There is in ZFC a Banach space C(X) which is a Grothendieck space without a copy of ℓ_∞ (Haydon).
- There is in ZFC compact X containing βN such that C(X) is Grothendieck without ℓ_∞ (Koszmider-Shelah).
- (CH) There is compact X without $\beta \mathbb{N}$ such that C(X) does not have a quotient isomorphic to ℓ_{∞} (Talagrand).
- ((MA)∧ ~ (CH)) Every nonreflexive Grothendieck space has quotient ℓ_∞ (Haydon-Levy-Odell).

(日) (四) (三) (三) (三) (三)

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

• For every infinite compact X the space C(X) contains c_0 .

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

(4回) (4回) (4回)

- For every infinite compact X the space C(X) contains c_0 .
- This subspace need not be complemented, for $X = \beta \mathbb{N}$, the space C(X) does not contain any complemented copies of c_0 .

- 4 周 ト 4 日 ト 4 日 ト - 日

- For every infinite compact X the space C(X) contains c_0 .
- This subspace need not be complemented, for X = βN, the space C(X) does not contain any complemented copies of c₀.

Theorem 1 (Cembranos)

A Banach space C(X) is Grothendieck iff C(X) does not contain a complemented copy of c_0 .

- For every infinite compact X the space C(X) contains c_0 .
- This subspace need not be complemented, for X = βN, the space C(X) does not contain any complemented copies of c₀.

Theorem 1 (Cembranos)

A Banach space C(X) is Grothendieck iff C(X) does not contain a complemented copy of c_0 .

Theorem 2 (Cembranos-Freniche)

For every infinite compact spaces K and L the Banach space $C(K \times L)$ contains a complemented copy of the space c_0 .

イロト イヨト イヨト イヨト

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

• To study C_p variants of the above results, define $(c_0)_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : x_n \to 0\},$ $(\ell_{\infty})_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : \sup_n |x_n| < \infty\}.$

(本部) (本語) (本語) (語)

- To study C_p variants of the above results, define $(c_0)_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : x_n \to 0\},$ $(\ell_{\infty})_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : \sup_n |x_n| < \infty\}.$
- $C_p(X)$ satisfies the Josefson-Nissenzweig property (JNP) if there is a sequence (μ_n) of finitely supported sign-measures on X with $\|\mu_n\| = 1$ for all $n \in \mathbb{N}$, and $\mu_n(f) \to_n 0$ for each $f \in C_p(X)$ (Banakh-Kąkol-Śliwa),

- - 4 回 ト - 4 回 ト - - 回

- To study C_p variants of the above results, define $(c_0)_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : x_n \to 0\},$ $(\ell_{\infty})_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : \sup_n |x_n| < \infty\}.$
- $C_p(X)$ satisfies the Josefson-Nissenzweig property (JNP) if there is a sequence (μ_n) of finitely supported sign-measures on X with $\|\mu_n\| = 1$ for all $n \in \mathbb{N}$, and $\mu_n(f) \rightarrow_n 0$ for each $f \in C_p(X)$ (Banakh-Kąkol-Śliwa),
- where $C_p(X)' \ni \mu = \sum_{x \in F} a_x \delta_x$ for some finite $F \subset X$, $\|\mu\| = \sum_{x \in F} |a_x|$.

- To study C_p variants of the above results, define $(c_0)_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : x_n \to 0\},$ $(\ell_{\infty})_p = \{(x_n) \in \mathbb{R}^{\mathbb{N}} : \sup_n |x_n| < \infty\}.$
- $C_p(X)$ satisfies the Josefson-Nissenzweig property (JNP) if there is a sequence (μ_n) of finitely supported sign-measures on X with $||\mu_n|| = 1$ for all $n \in \mathbb{N}$, and $\mu_n(f) \to_n 0$ for each $f \in C_p(X)$ (Banakh-Kąkol-Śliwa),
- where $C_p(X)' \ni \mu = \sum_{x \in F} a_x \delta_x$ for some finite $F \subset X$, $\|\mu\| = \sum_{x \in F} |a_x|$.
- Easy fact: If a compact space X contains a non-trivial convergent sequence, then $C_p(X)$ satisfies the JNP.

Theorem 3 (Banakh-Kakol-Šliwa)

For a Tychonoff space X the following are equivalent:

- $C_p(X)$ contains a complemented copy of $(c_0)_p$.
- $C_p(X)$ has a quotient isomorphic to $(c_0)_p$.
- $C_p(X)$ admits a continuous linear surjection onto $(c_0)_p$.
- $C_p(X)$ satisfies the JNP.

Theorem 3 (Banakh-Kąkol-Śliwa)

For a Tychonoff space X the following are equivalent:

- $C_p(X)$ contains a complemented copy of $(c_0)_p$.
- $C_p(X)$ has a quotient isomorphic to $(c_0)_p$.
- $C_p(X)$ admits a continuous linear surjection onto $(c_0)_p$.
- $C_p(X)$ satisfies the JNP.

This provides a C_p -variant of the well known theorem stating that for a compact space X the Banach space C(X)contains a complemented copy of c_0 if and only if C(X) admits a continuous linear surjection onto c_0 .

イロン イヨン イヨン イヨン

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

Theorem 4 (Kakol-Molto-Śliwa)

Let X be an infinite Tychonoff space. Then $C_p(X)$ contains a copy of $(c_0)_p$. If X contains an infinite compact subset, then $C_p(X)$ contains a closed copy of $(c_0)_p$.

★ □ ★ ↓ ★ ↓ ★ ↓ ★ ↓ ↓ ↓

Theorem 4 (Kakol-Molto-Śliwa)

Let X be an infinite Tychonoff space. Then $C_p(X)$ contains a copy of $(c_0)_p$. If X contains an infinite compact subset, then $C_p(X)$ contains a closed copy of $(c_0)_p$.

Since $(c_0)_p$ contains a copy of $(\ell_\infty)_p$, we have the following

(本部) (문) (문) (문

Theorem 4 (Kakol-Molto-Śliwa)

Let X be an infinite Tychonoff space. Then $C_p(X)$ contains a copy of $(c_0)_p$. If X contains an infinite compact subset, then $C_p(X)$ contains a closed copy of $(c_0)_p$.

Since $(c_0)_p$ contains a copy of $(\ell_\infty)_p$, we have the following

Corollary 5

If X is an infinite Tychonoff space, then $C_p(X)$ contains a copy of $(\ell_{\infty})_p$.

(日) (四) (三) (三) (三) (三)

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

JERZY KAKOL On spaces ℓ_∞ and c_0 with the pointwise topology embedd

イロン イヨン イヨン イヨン

Theorem 6 (Plebanek-Sobota)

If X and Y are compact non-scattered spaces, then $C(X \times Y)$ contains a complemented copy of the Banach space C[0, 1].

A (10) A (10) A (10) A

Theorem 6 (Plebanek-Sobota)

If X and Y are compact non-scattered spaces, then $C(X \times Y)$ contains a complemented copy of the Banach space C[0, 1].

Theorem 7 (Kąkol-Sobota-Zdomskyy)

For infinite compact spaces X and Y the space $C_p(X \times Y)$ contains a complemented copy of $(c_0)_p$.

Theorem 6 (Plebanek-Sobota)

If X and Y are compact non-scattered spaces, then $C(X \times Y)$ contains a complemented copy of the Banach space C[0, 1].

Theorem 7 (Kąkol-Sobota-Zdomskyy)

For infinite compact spaces X and Y the space $C_p(X \times Y)$ contains a complemented copy of $(c_0)_p$.

Nevertheless, we have the following

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 6 (Plebanek-Sobota)

If X and Y are compact non-scattered spaces, then $C(X \times Y)$ contains a complemented copy of the Banach space C[0, 1].

Theorem 7 (Kąkol-Sobota-Zdomskyy)

For infinite compact spaces X and Y the space $C_p(X \times Y)$ contains a complemented copy of $(c_0)_p$.

Nevertheless, we have the following

Theorem 8 (Kąkol–Marciszewski-Sobota-Zdomskyy)

It is consistent that there exists an infinite pseudocompact space X such that $C_p(X \times X)$ does not contain a complemented copy of $(c_0)_p$.

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

▲□▶ ▲□▶ ▲三▶ ▲三≯ 三三 - のへで

C(K) has the Grothendieck property for a family
 M ⊂ C(K)* of measures if every weak* null sequence
 (μ_n) ⊂ M is weakly null (Kąkol-Sobota-Zdomskyy).

- C(K) has the Grothendieck property for a family
 M ⊂ C(K)* of measures if every weak* null sequence
 (μ_n) ⊂ M is weakly null (Kąkol-Sobota-Zdomskyy).
- C(K) is $\ell_1(K)$ -**Grothendieck**, if it has a Grothendieck property for $\mathcal{M} = \ell_1(K) \subset C(K)^*$, where $\gamma \in \ell_1(K)$ acts on C(K) as $\langle f, \gamma \rangle = \sum_{x \in K} f(x) \gamma(x)$ since $\sum_{x \in K} |\gamma(x)| < \infty$. Recall $\ell_1(K)$ is isomorphic $M_d(K)$ discrete measures on K.

- - 4 回 ト - 4 回 ト - - 回

- C(K) has the Grothendieck property for a family
 M ⊂ C(K)* of measures if every weak* null sequence
 (μ_n) ⊂ M is weakly null (Kąkol-Sobota-Zdomskyy).
- C(K) is $\ell_1(K)$ -**Grothendieck**, if it has a Grothendieck property for $\mathcal{M} = \ell_1(K) \subset C(K)^*$, where $\gamma \in \ell_1(K)$ acts on C(K) as $\langle f, \gamma \rangle = \sum_{x \in K} f(x) \gamma(x)$ since $\sum_{x \in K} |\gamma(x)| < \infty$. Recall $\ell_1(K)$ is isomorphic $M_d(K)$ discrete measures on K.

Theorem 9 (Kąkol-Sobota-Zdomskyy)

Let K be an infinite compact space.

- If C(K) is a Grothendieck space, $C_p(K)$ fails the JNP.
- **2** C(K) is $\ell_1(K)$ -Grothendieck iff $C_p(K)$ fails the JNP.

With spaces $(\ell_{\infty})_p$ and $(c_0)_p$ we have

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

イロト イヨト イヨト イヨト 二日

With spaces $(\ell_{\infty})_{\rho}$ and $(c_0)_{\rho}$ we have

Theorem 10

- The space $(\ell_{\infty})_p$ is σ -compact while $(c_0)_p$ is not.
- There is a continuous map from (c₀)_p onto (ℓ∞)_p but no linear continuous surjection between both spaces exists.
- Let X be a compact space containing βN. Then C_p(X) admits a continuous open linear map onto (ℓ_∞)_p (Banakh-Kąkol-Śliwa).
- (CH) there exists a compact space X not containing βℕ such that C(X) is Grothendieck and there is no continuous linear surjection from C_p(X) onto (ℓ_∞)_p.

イロト イヨト イヨト イヨト

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recall two motivating facts: For a Tychonoff space X the space C_p(X) is σ-compact iff X is finite (Velichko) iff C_p(X) has a fundamental sequence of bounded sets (Ferrando-Kąkol).

- Recall two motivating facts: For a Tychonoff space X the space C_p(X) is σ-compact iff X is finite (Velichko) iff C_p(X) has a fundamental sequence of bounded sets (Ferrando-Kąkol).
- Above results may motivate the following

- 4 周 ト 4 日 ト 4 日 ト - 日

- Recall two motivating facts: For a Tychonoff space X the space C_p(X) is σ-compact iff X is finite (Velichko) iff C_p(X) has a fundamental sequence of bounded sets (Ferrando-Kąkol).
- Above results may motivate the following

Problem 11

Does there exist infinite compact X such that $C_p(X)$ contains a closed infinite-dimensional σ -compact vector subspace?

(4月) (4日) (4日)

Recall two motivating facts: For a Tychonoff space X the space C_p(X) is σ-compact iff X is finite (Velichko) iff C_p(X) has a fundamental sequence of bounded sets (Ferrando-Kąkol).

Above results may motivate the following

Problem 11

Does there exist infinite compact X such that $C_p(X)$ contains a closed infinite-dimensional σ -compact vector subspace?

Theorem 12 (Kąkol-Kurka)

Let X be a Tychonoff space containing a non scattered compact subspace. Then $C_p(X)$ contains a closed σ -compact infinite-dimensional subspace.

・ロト ・日ト ・ヨト ・ヨト

Recall two motivating facts: For a Tychonoff space X the space C_p(X) is σ-compact iff X is finite (Velichko) iff C_p(X) has a fundamental sequence of bounded sets (Ferrando-Kąkol).

Above results may motivate the following

Problem 11

Does there exist infinite compact X such that $C_p(X)$ contains a closed infinite-dimensional σ -compact vector subspace?

Theorem 12 (Kąkol-Kurka)

Let X be a Tychonoff space containing a non scattered compact subspace. Then $C_p(X)$ contains a closed σ -compact infinite-dimensional subspace.

Summing up we have even the following

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

For an infinite compact space X the following are equivalent:

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

For an infinite compact space X the following are equivalent:

• X is scattered.

For an infinite compact space X the following are equivalent:

- X is scattered.
- There is no infinite-dimensional σ -compact closed vector subspace of $C_p(X)$.

For an infinite compact space X the following are equivalent:

- X is scattered.
- There is no infinite-dimensional σ -compact closed vector subspace of $C_p(X)$.
- No infinite-dimensional vector subspace of C_p(X) admits a fundamental sequence of bounded sets.

For an infinite compact space X the following are equivalent:

- X is scattered.
- There is no infinite-dimensional σ -compact closed vector subspace of $C_p(X)$.
- No infinite-dimensional vector subspace of C_p(X) admits a fundamental sequence of bounded sets.

For an infinite compact space X the following are equivalent:

- X is scattered.
- There is no infinite-dimensional σ-compact closed vector subspace of C_p(X).
- No infinite-dimensional vector subspace of C_p(X) admits a fundamental sequence of bounded sets.

Theorem 14 (Namioka-Phelps, Gerlits, Pytkeeev)

For an infinite compact space X the following are equivalent:

- X is scattered.
- O(X) is an Asplund space (Namioka-Phelps).
- $C_p(X)$ is Fréchet-Urysohn (Gerlits, Pytkeev).

э

For an infinite compact space X the following are equivalent:

- X is scattered.
- There is no infinite-dimensional σ-compact closed vector subspace of C_p(X).
- No infinite-dimensional vector subspace of C_p(X) admits a fundamental sequence of bounded sets.

Theorem 14 (Namioka-Phelps, Gerlits, Pytkeeev)

For an infinite compact space X the following are equivalent:

- X is scattered.
- O(X) is an Asplund space (Namioka-Phelps).
- $C_p(X)$ is Fréchet-Urysohn (Gerlits, Pytkeev).

(4月) (1日) (日)

э

For an infinite compact space X the following are equivalent:

- X is scattered.
- There is no infinite-dimensional σ-compact closed vector subspace of C_p(X).
- No infinite-dimensional vector subspace of C_p(X) admits a fundamental sequence of bounded sets.

Theorem 14 (Namioka-Phelps, Gerlits, Pytkeeev)

For an infinite compact space X the following are equivalent:

- X is scattered.
- O(X) is an Asplund space (Namioka-Phelps).
- $C_p(X)$ is Fréchet-Urysohn (Gerlits, Pytkeev).

(4月) (1日) (日)

э

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Applying the above results we derive

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

イロン イヨン イヨン イヨン

• Applying the above results we derive

Corollary 16

For infinite compact scattered space X the closure of the σ -compact subspace $(\ell_{\infty})_p$ of $C_p(X)$ is not σ -compact.

JERZY KAKOL On spaces ℓ_{∞} and c_0 with the pointwise topology embedd

・ 同 ト ・ ヨ ト ・ ヨ ト

イロン イヨン イヨン イヨン

 bounding b (dominating ∂) cardinal is defined as the least cardinality for unbounded (cofinal subsets) of (N^N, ≤*).

・ 回 ト ・ ヨ ト ・ ヨ ト …

- bounding b (dominating ∂) cardinal is defined as the least cardinality for unbounded (cofinal subsets) of (N^N, ≤*).
- $C \subset \mathbb{N}^{\mathbb{N}}$ is *cofinal* if for each $\alpha = (a_k) \in \mathbb{N}^{\mathbb{N}}$ there is $\beta = (\beta_k) \in C$ with $\alpha \leq^* \beta$, what means $a_k \leq b_k$ for almost all $k \in \mathbb{N}$.

(4月) (3日) (3日) 日

- bounding b (dominating ∂) cardinal is defined as the least cardinality for unbounded (cofinal subsets) of (N^N, ≤*).
- $C \subset \mathbb{N}^{\mathbb{N}}$ is *cofinal* if for each $\alpha = (a_k) \in \mathbb{N}^{\mathbb{N}}$ there is $\beta = (\beta_k) \in C$ with $\alpha \leq^* \beta$, what means $a_k \leq b_k$ for almost all $k \in \mathbb{N}$.
- In any (*ZFC*)-consistent system, one has $\aleph_1 \leq \mathfrak{b} \leq \mathfrak{d} \leq 2^{\aleph_0}$. In (*CH*) all this cardinals coincide.

(日) (日) (日) (日)

- bounding b (dominating ∂) cardinal is defined as the least cardinality for unbounded (cofinal subsets) of (N^N, ≤*).
- C ⊂ N^N is cofinal if for each α = (a_k) ∈ N^N there is β = (β_k) ∈ C with α ≤* β, what means a_k ≤ b_k for almost all k ∈ N.
- In any (ZFC)-consistent system, one has
 ℵ₁ ≤ 𝔅 ≤ 𝔅 ≤ 𝔅[∞]. In (CH) all this cardinals coincide.

Example 17

Let F be a set with $|F| \ge \mathfrak{d}$ endowed with the discrete topology and let X be the product $F \times [1, \omega]$. Then there is a sequence f_1, f_2, \ldots in $C_p(X)$ that forms an algebraic basis of a closed σ -compact subspace of $C_p(X)$.