University of Coimbra

Return time sets and product recurrence

Jian Li

Joint work with Xianjuan Liang and Yini Yang

arXiv:2406.18231

Department of Mathematics, Shantou University

lijian09@mail.ustc.edu.cn

38th Summer Conference on Topology and its Applications

2024-7-11

By a **topological dynamical system**, we mean a pair (X, T), where X is a compact metric space with a metric d, and T is a continuous map from X to itself.

Convention: $T^0 = id_X$, $T^n = T \circ T^{n-1}$, $\forall n \in \mathbb{N}$.

For a point $x \in X$ and a subset U of X, the **return time set of** x **into** U is

 $N(x,U) = \{ n \in \mathbb{N}_0 \colon T^n x \in U \}.$

The study of return time set plays an important role in the following aspects:

- 1. Classifications of topological dynamical systems.
- 2. Characterizations of dynamics properties.
- 3. Applications to combinatorial number theory.

Definition Let $\{p_i\}_{i=1}^{\infty}$ be a sequence in \mathbb{N}_0 . The **finite sum** of $\{p_i\}_{i=1}^{\infty}$ is $FS(\{p_i\}_{i=1}^{\infty}) = \left\{\sum_{i \in \alpha} p_i : \alpha \text{ is a non-empty finite subset of } \mathbb{N}\right\}.$

We say that a subset F of \mathbb{N}_0 is an **IP-set** if there exists a sequence $\{p_i\}_{i=1}^{\infty}$ in \mathbb{N}_0 such that $FS(\{p_i\}_{i=1}^{\infty})$ is infinite and contained in F.

We say that a point $x \in X$ is **recurrent** if for every neighborhood U of x, the return time set N(x, U) is infinite.

- Theorem (Furstenberg 1981)
 - 1. Let (X,T) be a topological dynamical system and $x \in X$. If x is recurrent, then for every neighborhood U of x, the return time set N(x, U) is an IP-set.
 - 2. For every IP-subset F of \mathbb{N}_0 , there exists a topological dynamical system (X, T), a recurrent point $x \in X$ and a neighborhood U of x such that $N(x, U) \subset F \cup \{0\}$.

Furstenberg, H. Recurrence in ergodic theory and combinatorial number theory. M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1981.

We say that a subset F of \mathbb{N}_0 is **syndetic** if there exists $N \in \mathbb{N}$ such that for any $n \in \mathbb{N}_0$, $F \cap [n, n+N] \neq \emptyset$.

Let (X,T) be a topological dynamical system. We say that a point $x \in X$ is **almost periodic** if for every neighborhood U of x, the return time set N(x, U) is syndetic.

Theorem (Birkhoff 1927, Gottschalk-Hedlund 1955)

Let (X, T) be a topological dynamical system. A point $x \in X$ is almost periodic if and only if (Orb(x,T),T) is minimal, that is Orb(x,T) does not contain any proper *T*-invariant closed subsets.

Let (X, T) be a topological dynamical system and $x, y \in X$. If $\liminf_{n \to \infty} d(T^n x, T^n y) = 0$, then we say that (x, y) is **proximal**.

A point $x \in X$ is called **distal** if for any $y \in \overline{\operatorname{Orb}(x,T)} \setminus \{x\}$, (x, y) is not proximal, that is, $\liminf_{n \to \infty} d(T^n x, T^n y) > 0$.

We say that (X,T) is **distal** if any point in X is distal.

We say that a subset F of \mathbb{N}_0 is an **IP**^{*}-set if for every IP-set H in \mathbb{N}_0 , $F \cap H \neq \emptyset$.

Theorem (Furstenberg 1981)

Let (X,T) be a topological dynamical system and $x \in X$. Then the following assertions are equivalent:

- 1. x is a distal point;
- 2. for every neighborhood U of x, the return time set N(x, U) is an IP^* -set;
- 3. *x* is **product recurrent**, that is, for every dynamical system (Y, S) and every recurrent point $y \in Y$, (x, y) is recurrent in the product system $(X \times Y, T \times S)$.

We say that a subset F of \mathbb{N}_0 is a **central set** if there exists a topological dynamical system (X, T), a point $x \in X$, an almost periodic point $y \in X$ and a neighborhood U of y such that

- 1. (x, y) is proximal, that is, $\liminf_{n \to \infty} d(T^n x, T^n y) = 0$
- 2. $N(x, U) \subset F$.

We say that a subset F of \mathbb{N}_0 is an **central**^{*}-set if for every central set H in \mathbb{N}_0 , $F \cap H \neq \emptyset$.

Theorem (Furstenberg 1981)

Let (X,T) be a topological dynamical system and $x \in X$. Then the following assertions are equivalent:

- 1. x is a distal point;
- 2. for every neighborhood U of x, the return time set N(x, U) is a central^{*}-set;
- 3. for every dynamical system (Y, S) and every almost periodic point $y \in Y$, (x, y) is almost periodic in the product system $(X \times Y, T \times S)$.

Theorem (L.-Yang 2024)

Let (X,T) be a minimal system. Then the following assertions are equivalent:

- 1. (X,T) is distal;
- 2. (X,T) is pairwise IP*-equicontinuous if for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for any $x, y \in X$ with $d(x, y) < \delta$, one has $\{i \in \mathbb{N} : d(T^ix, T^iy) < \varepsilon\}$ is an IP*-set;
- 3. (X,T) is pairwise central*-equicontinuous if for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for any $x, y \in X$ with $d(x, y) < \delta$, one has $\{i \in \mathbb{N} : d(T^ix, T^iy) < \varepsilon\}$ is an central*-set.

Li, Jian; Yang, Yini. Characterizations of distality via weak equicontinuity. Discrete Contin. Dyn. Syst. 44 (2024), no. 1, 61–77.

Theorem (Auslander-Furstenberg 1994)

Let (X,T) be a \mathbb{Z} -action and $x \in X$. Then x is \mathbb{Z} -distal if and only if it is \mathbb{N} -distal.

Question (Auslander-Furstenberg 1994)

- How to characterize the closed subsemigroups S of a compact right topological semigroup for which a product S-recurrent point is a distal point? (When an *F*-product recurrent point is distal?)
- 2. If (x, y) is recurrent for all almost periodic points y, is x necessarily a distal point?

Auslander, J.; Furstenberg, H. Product recurrence and distal points. Trans. Amer. Math. Soc. 343 (1994), no. 1, 221–232.

Let (X, T) be a dynamical system. A point $x \in X$ is said to be **weakly product** recurrent if for any dynamical system (Y, S) and any almost periodic point $y \in Y$, the point (x, y) is recurrent in the product system $(X \times Y, T \times S)$.

Theorem (Haddad-Ott 2008)

In the full shift $(\{0,1\}^{\mathbb{N}_0}, \sigma)$, every transitive point x is weakly product recurrent but not distal. So the second question of Auslander-Furstenberg (1994) is negative.

Haddad, Kamel; Ott, William. Recurrence in pairs. Ergodic Theory Dynam. Systems 28 (2008), no. 4, 1135–1143.

Let \mathcal{F} be a collection of subsets of \mathbb{N}_0 . If \mathcal{F} is hereditary upwards, that is, $F \in \mathcal{F}$ and $F \subset H \subset \mathbb{N}_0$ imply $H \in \mathcal{F}$, then we say that \mathcal{F} is a **Furstenberg family**.

Definition

Let (X,T) be a topological dynamical system and \mathcal{F} be a Furstenberg family. A point $x \in X$ is said to be \mathcal{F} -recurrent if for every neighborhood U of x,

$$N(x, U) := \{ n \in \mathbb{N}_0 \colon T^n x \in U \} \in \mathcal{F}.$$

Let (X, T) be a topological dynamical system and \mathcal{F} be a Furstenberg family. A point $x \in X$ is said to be \mathcal{F} -**product recurrent** if for any topological dynamical system (Y, S) and any \mathcal{F} -recurrent point $y \in Y$, the point (x, y) is recurrent in the product system $(X \times Y, T \times S)$.

Dong, Pandeng; Shao, Song; Ye, Xiangdong. Product recurrent properties, disjointness and weak disjointness. Israel J. Math. 188 (2012), 463–507.

We say that a subset F of \mathbb{N}_0 is **thick** if for any $N \in \mathbb{N}$ there exists $n \in \mathbb{N}_0$ such that $[n, n + N] \cap \mathbb{N}_0 \subset F$, and **piecewise syndetic** if it is an intersection of a syndetic set and a thick set.

Denote by \mathcal{F}_{ps} the collection of piecewise syndetic subsets of \mathbb{N}_0 .

Theorem (Huang-Ye 2005)

Let (X,T) be a topological dynamical system and $x \in X$. Then x is \mathcal{F}_{ps} -recurrent if and only if x is recurrent and the orbit closure of x has a dense set of almost periodic points.

 \mathcal{F}_{ns} -product recurrence

Theorem (Dong-Shao-Ye 2012)

If a subset F of \mathbb{N}_0 is thick, then there exists an \mathcal{F}_{ps} -recurrent point x in the full shift $(\{0,1\}^{\mathbb{N}_0}, \sigma)$ such that $N(x, [1]) \subset F \cup \{0\}$.

Theorem (Dong-Shao-Ye 2012)

For \mathbb{N}_0 -system, every \mathcal{F}_{ps} -product recurrent point is almost periodic.

Question (Dong-Shao-Ye 2012)

Dose every \mathcal{F}_{ps} -product recurrent point is distal?

 \mathcal{F}_{ns} -product recurrence

Theorem (Oproach-Zhang 2013)

If a subset F of \mathbb{N}_0 is central, then there exists an \mathcal{F}_{ps} -recurrent point x in the full shift $(\{0,1\}^{\mathbb{N}_0}, \sigma)$ such that $N(x, [1]) \subset F \cup \{0\}$.

Theorem (Oproach-Zhang 2013)

Every \mathcal{F}_{ps} -product recurrent point is distal.

Oprocha, Piotr; Zhang, Guohua. On weak product recurrence and synchronization of return times. Adv. Math. 244 (2013), 395–412.

Theorem $((1)\Leftrightarrow(2)$ by Hindman-Maleki-Strauss 1996; $(1)\Leftrightarrow(3)$ by Burns-Hindman 2007)

For a subset F of \mathbb{N}_0 , the following assertions are equivalent:

- (1) *F* is quasi-central, that is, there exists an idempotent $p \in \beta \mathbb{N}_0$ such that $p \subset \mathcal{F}_{ps}$ and $F \in p$;
- (2) there exists a decreasing sequence $\{F_n\}$ of piecewise syndetic subsets of F such that for any $n \in \mathbb{N}$ and $k \in F_n$ there exists $m \in \mathbb{N}$ such that $k + F_m \subset F_n$;
- (3) there exists a topological dynamical system (X,T), x ∈ X, an F_{ps}-recurrent point y ∈ X and a neighborhood U of y such that for every neighborhood V of y, N(x,V) ∩ N(y,V) is piecewise syndetic and N(x,U) ⊂ F ∪ {0}.

- Hindman, Neil; Maleki, Amir; Strauss, Dona. Central sets and their combinatorial characterization. J. Combin. Theory Ser. A 74 (1996), no. 2, 188–208.
- Burns, Shea D.; Hindman, Neil. Quasi-central sets and their dynamical characterization. Topology Proc. 31 (2007), no. 2, 445–455.
- Li, Jian. Dynamical characterization of C-sets and its application. Fund. Math. 216 (2012), no. 3, 259–286.

Theorem (L.-Liang-Yang, preprint)

- 1. Given a topological dynamical system (X,T), if $x \in X$ is an \mathcal{F}_{ps} -recurrent point, then for every neighborhood U of x, N(x, U) is a quasi-central set.
- 2. For a quasi-central subset F of \mathbb{N}_0 , there exists a topological dynamical system (X,T) and an \mathcal{F}_{ps} -recurrent point $x \in X$ and a neighborhood U of x such that $N(x,U) \subset F \cup \{0\}$.

Note: This result holds for countable infinite discrete group actions.

Theorem (L.-Liang-Yang, preprint)

Let G be a countable infinite discrete group. If a closed subsemigroup S of βG contains the smallest ideal $\mathcal{K}(\beta G)$ of βG , then for any Ellis action $\Phi: \beta G \times X \to X$, a point $x \in X$ is distal if and only if it is S-product recurrent.

Note: This partly answers the first question of Auslander-Furstenberg (1994).

Theorem (L.-Liang-Yang, preprint)

Let G be a countable infinite discrete group. If \mathcal{F} is \mathcal{F}_{ps} , \mathcal{F}_{inf} (the collection of infinite subsets of G), or the collection of subsets of G with positive upper Banach density when G is amenable, then for any G-system (X, G) and $x \in X$, the following assertions are equivalent:

- 1. $x \in X$ is distal;
- 2. *x* is \mathcal{F} -product recurrent;
- 3. for any *G*-system (Y, G) and any \mathcal{F} -recurrent point $y \in Y$, the point (x, y) is \mathcal{F} -recurrent in the product system $(X \times Y, G)$.

Note: This generalized Oproach-Zhang's result to group actions.

Let X be a compact Hausdorff space and G be a discrete group with an identity e. If $\Pi: G \times X \to X$ is a continuous map and satisfies

1.
$$\Pi(e, x) = x, x \in X;$$

2.
$$\Pi(s, \Pi(g, x)) = \Pi(sg, x), x \in X, s, g \in G$$
,

then the triple (X, G, Π) is called a *G*-system.

We will briefly say that the tuple (X, G) as a *G*-system and $gx := \Pi(g, x)$ if there is no ambiguity.

We say that a Furstenberg family \mathcal{F} satisfies **(P1)** if for any $A \in \mathcal{F}$ there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of finite subsets of G such that

- 1. for every $n \in \mathbb{N}$, $A_n \subset A$;
- 2. for every $m, n \in \mathbb{N}$ with $n \neq m$, $A_n \cap A_m = \emptyset$;
- 3. for every strictly increasing sequence $\{n_k\}_{k=1}^{\infty}$ in \mathbb{N} , $\bigcup_{k=1}^{\infty} A_{n_k} \in \mathcal{F}$.

We say that a Furstenberg family \mathcal{F} satisfies **(P2)** if for any $A \in \mathcal{F}$ and any finite subset K of G there exists a subset B of A such that $B \in \mathcal{F}$ and for any distinct $k_1, k_2 \in K \cup \{e\}, k_1B \cap k_2B = \emptyset$.

Lemma

Let \mathcal{F} be a proper Furstenberg family. If \mathcal{F} satisfies the following conditions:

1. for every $A \in \mathcal{F}$ and $g \in G$, $gA \in \mathcal{F}$;

2. \mathcal{F} has the Ramsey property, that is, $F_1 \cup F_2 \in \mathcal{F}$ implies either $F_1 \in \mathcal{F}$ or $F_2 \in \mathcal{F}$, then \mathcal{F} satisfies (P2).

Lemma

Let G be a countable infinite group. \mathcal{F}_{ps} and \mathcal{F}_{inf} satisfy (P1) and (P2).

If G is amenable, then the collection of subsets of G with positive upper Banach density satisfies (P1) and (P2).

Theorem

Let G be a countable infinite group and \mathcal{F} be a Furstenberg family satisfying (P1) and (P2). For any $F \in \mathcal{F}$, the following assertions are equivalent:

- 1. there exists a compact metric *G*-system (X, G), an \mathcal{F} -recurrent point $x \in X$ and a neighborhood *U* of *x* such that $N(x, U) \subset F \cup \{e\}$;
- 2. there exists an \mathcal{F} -recurrent point x in the full shift $(\{0,1\}^G, G)$ such that $N(x, [1]) \subset F \cup \{e\};$
- 3. there exists a decreasing sequence $\{F_n\}$ of F with $F_n \in \mathcal{F}$ such that for any $n \in \mathbb{N}$ and $f \in F_n$ there exists $m \in \mathbb{N}$ such that $fF_m \subset F_n$.

Note: this proof is "purely" combinatorial.

Using the ultrafilter representation of the Stone-Čech compactification βG of G and algebra properties of βG , one can extend the above result to G-system on compact Hausdorff spaces with the condition $h(\mathcal{F})$ is a non-empty closed subsemigroup of βG .

SUMTOPO 2024

Thanks for your attention!

