

The Appeal of Pointfree Topology (to classical topologists): M These are a few of my favorite things M

Joanne Walters-Wayland

CECAT: Schmid College

The Appeal of Pointfree Topology

These are a few of my favorite things:

- 1 Isbell's density theorem
- 2 Cozero "tree rings" of a completely regular frame
- 3 Scaffolding of a frame
- 4 Paracompactness
- 5 Bruns-Lakser completion of a meet-semilattice
- 6 Coz inclusions
- 7 ... paddling with dolphins.

Some basic concepts in frame theory

Categories: Frm and Loc

A *frame* is a complete lattice *L* which satisfies

 $x \land \bigvee x_i = \bigvee (x \land x_i)$ for all $x, x_i \in L$

A *frame map* preserves finite meets and arbitrary joins. preimage of continuous maps

 $Loc = Frm^{op}$

Examples: Complete Boolean algebras For $X \in \mathbf{Top}$, open sets $\mathcal{O}X$ of X

Top

Opens of $X \in \mathbf{Top}$

Sublocales/quotient frames/nuclei/congruences

Every frame is a complete Heyting algebra: $x \to y = \bigvee \{z : z \land x \le y\}$ Note that $z \land x \le y$ iff $z \le x \to y$ Galois connection

A subset S of L is a sublocale if

subspace

1 S is closed under \wedge

$$x \to s \in S$$
 for all $s \in S$ and $x \in L$.

- *S* has the same meets as *L*
- $1 \in S$
- joins in S may be different from joins in L

The collection of all sublocales form a coframe: (arbitrary) meet is intersection.

Sublocales/quotient frames/nuclei/congruences

A frame map $h: L \longrightarrow M$ has a right adjoint:

- $h_*(x) = \bigvee \{a \in L \mid h(a) = x\}$ largest element mapped to x
- $h(h_*(x)) = x$

If h is onto, $h_*[M] \cong M$,

• $h_*[M]$ is a sublocale of L

 $h_* \circ h$ is a nucleus

If S is a sublocale of L, define a frame map $h: L \longrightarrow S$

$$h(a) = \bigwedge \{s \in S \mid s \ge a\}$$

• *h* is an onto i.e. a frame quotient

Open sublocale vs. open quotient

In general, an element *a* in *L* can be "removed" by collapsing the frame:

• frame quotient

$$L \twoheadrightarrow \downarrow a$$
$$b \mapsto a \land b$$

• corresponding sublocale: each b in L is mapped to $a \rightarrow b$

$$\mathfrak{o}(a) = \{a \to b : b \in L\}$$

"subspace induced by an open set"

How to remove a point?

Consider $X \setminus \{x\}$: Topological inclusion $X \setminus \{x\} \hookrightarrow X$ is represented by $\mathfrak{o}(a)$ where $a = X \setminus \{x\}$

Skeleton a.k.a. Booleanization $\mathfrak{B}L$

- sublocale of *L*
- has no proper dense elements

Isbell's Density Theorem

Dense sublocales/quotient frames

S is a dense sublocale of L if $0 \in S$

- the frame morphism maps only 0 to 0;
- $0 = 0^{**}$ so $0 \in \mathfrak{B}L$

"closure" of S is L

Theorem (Isbell)

Every locale has a smallest dense sublocale namely $\mathfrak{B}L = \{x^{**} : x \in L\}$.

S is dense iff $\mathfrak{B}L \subseteq S$

No spatial analog

The skeleton of the (natural) topology on the Reals

 \mathfrak{BOR} , the skeleton of the reals: all regular opens (a.k.a. open domains)

- every open interval is a regular open
- union of two "separated" open intervals where (p,q) is "separated" from (r,s) if q < r "not touching"

Each real number r corresponds to the open set $(-\infty, r) \cup (r, \infty)$

- not regular opens
- dense in $\mathcal{O}\mathbb{R}$
- $\mathfrak{o}((-\infty, r) \cup (r, \infty))$ is a dense sublocale of $\mathscr{O}\mathbb{R}$ skeleton has no points

```
\mathfrak{BOR} \subseteq \bigcap_{r \in \mathbb{R}} \mathfrak{o}((-\infty, r) \cup (r, \infty))
```


Pointfree view of the rationals $\mathbb Q$ and irrationals $\mathbb P$

$$\mathbb{Q}=\mathbb{R}\smallsetminus\mathbb{P}$$

Sublocale of the rationals: $\mathcal{O}\mathbb{Q}$ irrationals: $\mathcal{O}\mathbb{P}$

Remove all the irrational points: rational points: $\mathcal{O}\mathbb{Q} = \bigcap_{r \in \mathbb{P}} \mathfrak{o}((-\infty, r) \cup (r, \infty))$ $\mathcal{O}\mathbb{P} = \bigcap_{r \in \mathbb{Q}} \mathfrak{o}((-\infty, r) \cup (r, \infty))$ $\mathbb{P} = \mathbb{R} \smallsetminus \mathbb{Q}$

Sublocale of the

Remove all the

Dense sublocale of $\mathcal{O}\mathbb{R}$ $\mathcal{O}\mathbb{R}$ Dense sublocale of

$$\mathfrak{BOR} \subseteq \bigcap_{r \in \mathbb{R}} \mathfrak{o}((-\infty, r) \cup (r, \infty)) = \mathcal{OQ} \cap \mathcal{OP}$$

Some other special elements of a frame

Rather below relation: b < a means that $b^* \lor a = 1$

CozL: cozero elements

- $a \in L$ is cozero if $a = \bigvee_{n} \{a_n | a_n \prec a\}$ "cozero subset"
- largest regular sub- σ -frame of L

A frame L is completely regular if it is join-generated by $\operatorname{Coz} L$

CL: complemented elements

• $a \in L$ is complemented if $a \prec a$

"clopen subset"

• boolean sub-lattice of *L*

A frame L is zero-dimensional if it is join-generated by CL

Cozeros vs. Skeleton

perfectly normal iff $L = \operatorname{Coz} L$ oz iff $\mathfrak{B}L \subseteq \operatorname{Coz} L$ ω_1 -hollow (almost P) iff $\operatorname{Coz} L \subseteq \mathfrak{B}L$ P-frame iff $\operatorname{Coz} L = CL$ extremally disconnected iff $\mathfrak{B}L = CL$ almost Boolean iff $\operatorname{Coz} L = \mathfrak{B}L (= CL)$

Summary of $\operatorname{Coz} L$ vs $\mathfrak{B}L$

Œ

2 The tree rings of a (completely regular) frame determined by Coz

Kappa cozeros: Perfectly normal degree

$\operatorname{Coz}_{\kappa} L$: κ -joins of cozeros

- completely regular κ -frames
- Ascending sequence of completely regular sub-κ-frames of *L*: Cozero tower

$$\operatorname{Coz} L \subseteq \cdots \subseteq \operatorname{Coz}_{\kappa} L \subseteq \cdots \subseteq \operatorname{Coz}_{\rho} L = L$$

The least such cardinal is called the perfectly normal degree of L

• L is perfectly normal iff PN degree is ω_1 for example, $\mathcal{O}\mathbb{R}$

Lindelöf coreflection

Theorem (Madden & Vermeer)

Lindelöf completely regular frames are a coreflective (full) subcategory of completely regular frames

No spatial analogue!

- denoted by $\mathscr{L}_{\omega_1}L$: all ω_1 -ideals of $\operatorname{Coz} L$ (downsets closed under countable joins)
- "free" frame over $\operatorname{Coz} L$ (as a ω_1 -frame)
- coreflection map is given by join and is a frame quotient, so L may be identified as a sublocale of $\mathscr{L}_{\omega,1}L$

•
$$\operatorname{Coz} L = \operatorname{Coz} \mathscr{L}_{\omega_1} L$$

κ -Lindelöf coreflections

Theorem (Madden & Vermeer)

 κ -Lindelöf completely regular frames are a coreflective (full) subcategory of completely regular frames

- denoted by L_κL: all κ-ideals of Coz_κL (downsets closed under κ-joins)
- "free" frame over $\operatorname{Coz}_{\kappa} L$ (as a κ -frame)
- coreflection map is given by join and is a frame quotient, so L may be identified as a sublocale of $\mathscr{L}_{\kappa}L$
- $\operatorname{Coz}_{\kappa} L = \operatorname{Coz}_{\kappa} \mathscr{L}_{\kappa} L$

The "Lindelöf" tower

- $\operatorname{Coz} L = \operatorname{Coz} \mathscr{L}_{\kappa} L$ for all κ
- $\operatorname{Coz}_{\kappa} L = \operatorname{Coz}_{\kappa} \mathscr{L}_{\gamma} L$ for all $\gamma \ge \kappa$

Ascending sequence of sublocales:

Lindelöf tower

$$L = \mathscr{L}_{\mu}L \subseteq \cdots \subseteq \mathscr{L}_{\gamma}L \subseteq \cdots \subseteq \mathscr{L}_{\kappa}L \subseteq \cdots \subseteq \mathscr{L}_{\omega_{1}}L$$

where $\mu \geq \gamma \geq \kappa \geq \omega_1$

The least such cardinal is called the Lindelöf degree of L

• *L* is Lindelöf iff the Lindelöf degree $\mu \le \omega_1$ For example, the Lindelöf degree of $\mathcal{O}\mathbb{R}$ is ω_1

Building the cozero "tree rings"

 $\operatorname{Coz} L \subseteq L \subseteq \mathscr{L}L$

$$\operatorname{Coz} L \subseteq \cdots \subseteq \operatorname{Coz}_{\kappa} L \subseteq \cdots \subseteq \operatorname{Coz}_{\rho} L = L$$

$$L = \mathscr{L}_{\mu}L \subseteq \dots \subseteq \mathscr{L}_{\gamma}L \subseteq \dots \subseteq \mathscr{L}_{\kappa}L \subseteq \dots \subseteq \mathscr{L}_{\omega_1}L$$

иторо

2024

Hollowing out of a frame

A frame is λ -hollow if it has no proper dense λ -cozero elements

- λ -hollow $\Leftrightarrow \operatorname{Coz}_{\lambda} L \subseteq \mathfrak{B}L$
- ω_1 -hollow \Leftrightarrow Coz $L \subseteq \mathfrak{B}L$, that is L is an almost P-frame
- hollow (if λ -hollow for all λ) $\Leftrightarrow L = \mathfrak{B}L$, that is L is its skeleton.

Theorem (Ball, Hager, WW)

 λ -hollow completely regular frames are a reflective (non-full) subcategory of completely regular frames

- denoted by $\mathcal{H}_{\lambda}L$
- intersection of all the dense λ-cozero sublocales of L remove all dense λ-cozeros

$$\mathcal{H}_{\lambda}L = \bigcap_{\text{dense}a \in \text{Coz}_{\lambda}L} \mathfrak{o}(a)$$

Hollowing sequence (descending):

$$L \supseteq \mathcal{H}_{\omega_1} L \supseteq \cdots \supseteq \mathcal{H}_{\lambda} L \subseteq \cdots \supseteq \mathcal{H}_{\rho} L = \mathfrak{B} L$$

Building the scaffolding of a completely regular frame L

2024

Building the scaffolding of a completely regular frame L

 \odot

 \odot

The scaffolding of the reals

Recall:

- $\mathcal{O}\mathbb{R}$ is perfectly normal so $\mathcal{O}\mathbb{R} = \operatorname{Coz}\mathcal{O}\mathbb{R}$
- $\mathfrak{BOR} = \mathfrak{B}_{\kappa} \mathfrak{OR}$ for all $\kappa \ge \omega_1$
- $\mathcal{O}\mathbb{R}$ is Lindelöf so $\mathcal{O}\mathbb{R} = \mathscr{L}_{\kappa}\mathcal{O}\mathbb{R}$ for all $\kappa \geq \omega_1$

 $\mathscr{O}\mathbb{R} \longrightarrow \mathfrak{B}\mathscr{O}\mathbb{R}$

The scaffolding of $\beta \mathbb{R}$

Recall:

- $\mathscr{O}\beta\mathbb{R}$ is compact, hence Lindelöf
- $\mathcal{O}\beta\mathbb{R}$ is NOT perfectly normal so $\operatorname{Coz}\mathcal{O}\beta\mathbb{R} \subset \mathcal{O}\beta\mathbb{R}$
- but, $\mathfrak{BOR} \cong \mathfrak{BOPR} = \mathfrak{B}_{\kappa} \mathcal{OPR}$ for all $\kappa \ge \omega_1$

Some other favorites...

4 Paracompactness

- Coreflective subcategory of completely regular frames
- No spatial analog
- Uses the completion of the fine uniformity...

5 Bruns-Lakser completion of a meet-semilattice

- injective hull of the meet-semilattice
- always a frame (cf. Dedekind-McNeille completion)

6 Coz inclusions

• use interaction of cozeros and sublocales to understand weakenings of *C*-embeddings that are different from *C**-embeddings, but are also stronger than *Z*-embeddings.

Advertising Moment: Banaschewski 100

SAVE THE DATE: January 20–23, 2026 Chapman University, Grange, California USA

https://sites.google.com/chapman.edu/banaschewski100/

Θ