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What is a Permutation Model?

Definition

A dynamical ideal is a triple (Γ ↷ X , I ) where Γ is a group acting
on the set X and I is an ideal invariant under the group action.

A dynamical ideal can be used to construct a permutation model
of set theory:

Definition

Given a dynamical ideal (Γ ↷ X , I ), let V [[X ]] denote a model of
ZFCA using X as the set of atoms. The permutation model
associated to the dynamical ideal is the transitive part of
{A ∈ V [[X ]] : ∃b ∈ I : pstab(b) ⊆ stab(A)}.
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σ-Complete Ideals

Definition

Let (Γ ↷ X , I ) be a dynamical ideal. The dynamical ideal is
σ-complete if for every set a ∈ I and every countable sequence
(bn : n ∈ ω) ⊆ I there are group elements γn ∈ pstab(a) such that⋃

n γn · bn ∈ I .

Theorem

(Zapletal, 2023) Let (Γ ↷ X , I ) be a dynamical ideal. If the
dynamical ideal is σ-complete, then the associated permutation
model satisfies the axiom of countable choice.
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A Tool for σ-completeness

Definition

Let (Homeo(X ) ↷ X , I ) be a dynamical ideal, and let d be a
compatible metric on X . We say the dynamical ideal is tight if for
all a, b ∈ I and for all ε > 0, there is γ ∈ pstab(a) such that
γ · b ⊆ Ball(a, ε).

Proposition

(Y.) Let I be the ideal of countable closed sets on a metrizable
space X . If the dynamical ideal (Homeo(X ) ↷ X , I ) is tight, then
it is σ-complete.

Proof.

Choose γn such that γn · bn ⊆ Ball(a, 1/n) and use sequential
closure to show that a ∪

⋃
γn · bn is closed.
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Examples of Tight Ideals

Example

(Y.) Let X = 2ω and I the ideal generated by countable closed
sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof.

1 Let a, b, ε be given. Let C be a finite cover of a by pairwise
disjoint balls of radius < ε.

2 Let D be a finite cover of b by disjoint balls such that
⋃
D is

disjoint from
⋃
C.

3 By induction on D, move sets in D to
⋃
C.
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Examples of Tight Ideals

Example

(Y.) Let X = Rn and I the ideal generated by countable compact
sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof.

1 Let a, b, ε be given, and let C cover of a by pairwise disjoint
balls of radius < ε with boundaries disjoint from b.

2 Replace b with b \
⋃
C and a with a ∪ (b ∩

⋃
C).

3 Let D cover b by pairwise disjoint balls with
⋃
D ∩

⋃
C ̸= ∅.

4 Given C ∈ C and D ∈ D, find a set K which is the image of
the unit circle under a self-homeomorphism of Rn, contains C
and D and does not meet any other set in either cover.

5 Apply the Annulus Theorem to the region obtained in the
previous step.
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Modifications

Example

(Y.) Let X = Rn and I the ideal generated by countable closed
sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof.

Given a, b ∈ I , tile Rn with “cubes” such that the boundaries avoid
a, b. Now deal with each cube individually.

Example

(Y.) Let X = [0, 1]n and I the ideal generated by countable closed
sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof.

Use a sphere to separate the cube into two parts which can be
dealt with individually.
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A Non-example

Proposition

Let (X , d) be a separable metric space, and let I contain all
countable closed sets. Then (Iso(X , d) ↷ (X , d), I ) is not
σ-complete.

Proof.

1 Let a = ∅ and for each n let bn be a 1/n net of X .

2 Note that regardless of the choice of γn,
⋃
γn · bn will be a

dense set.
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Cofinal Orbits

Definition

Let (Γ ↷ X , I ) be a dynamical ideal. It has cofinal orbits if for
every a ∈ I there exists a b ∈ I which is a-large: for every c ∈ I
there exists γ ∈ pstab(a) such that c ⊆ γ · b.

Theorem

(Zapletal, 2023) Let (Γ ↷ X , I ) be a dynamical ideal with cofinal
orbits. The corresponding permutation model satisfies the axiom
of well-ordered choice.
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An example of cofinal orbits

Example

(Y., independently discovered by M. Elekes) Let X = [0, 1]n, and I
the ideal generated by closed nowhere dense sets. Then
(Homeo(X ) ↷ X , I ) has cofinal orbits.

The argument involves building a Sierpiński carpet on top of
nowhere dense sets:
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Sierpiński Carpet

Definition

A ⊆ X = [0, 1]n is an n−1-dimensional Sierpiński carpet filling X if

1 A is closed nowhere dense

2 bd(X ) ⊆ A

3 The set of components of X \ A, {Ui : i ∈ ω} is such that
diam(Ui ) → 0

4 {Ui : i ∈ ω} is pairwise disjoint

The following is a corollary of theorems of Whyburn (n = 1, 1958)
and Cannon (n ≥ 2, 1972):

Lemma

Given Sierpiński carpets A,B ⊆ X , there is a self-homeomorphism
of X such that h(A) = B and h|bd(X ) = id .
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Sierpiński Carpet

Lemma

Given A ⊆ [0, 1]n, there is a Sierpiński Carpet B filling [0, 1]n such
that A ⊆ B.

Proof.

Fix a countable dense subset {xi : i ∈ ω} and construct Ui

centered at xi such that

1 diam(Ui ) < 1/i

2 Ui is disjoint from A and Uj for j < i .

In the end, let B = [0, 1]n \
⋃
Ui .
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NWD has Cofinal Orbits

We are finally ready to state the proof that
Homeo([0, 1]n ↷ [0, 1]n,NWD) has cofinal orbits.

Proof.

1 Given a ∈ I , let K ⊇ a be a Sierpiński carpet filling [0, 1]n.

2 For each complementary component Ui of [0, 1]
n \ K , let bi

be a Sierpiński carpet filling Ui . Let b = K ∪
⋃
bi .

3 Given c ∈ I , to see b is a-large, apply the corollary from
Whyburn and Cannon to each Ui to get γi which moves bi
onto the corresponding portion of c .

4 Finally, paste all of the γi together.
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Modifications

Definition

Let IC be an ideal on [0, 1]n and define a corresponding ideals on
Rn:
IS = {a : for any homeomorphic image of the cube C , a ∩ C ∈ IC}
ISB = {a : a ∈ IS and a is bounded}

Proposition

(Y.) If bd [0, 1]n ∈ IC and (Homeo([0, 1]n) ↷ [0, 1]n, IC ) has cofinal
orbits, then so does (Homeo(Rn) ↷ Rn, IS) as well as
(Homeo(Rn) ↷ Rn, ISB).

Proof.

Tile the space with copies of the cube.
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Further work

1 Does the result for the ideal of countable closed sets
generalize to infinite-dimensional space?

2 Does the result for the ideal of closed nowhere dense sets
generalize to infinite-dimensional space?

3 In R2, the ideal of compact 0-dimensional sets satisfies a
criterion that implies the permutation model satisfies the
axiom of dependent choice. Can the ideal be shown to have
cofinal orbits?

4 Is there a uniform way to make connections between an ideal
of closed sets and the corresponding ideal of compact sets?
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Thank you!
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