Permutation Models Arising from Topological Spaces

Justin Young

University of Florida Joint work with Jindrich Zapletal

SUMTOPO July 9, 2024

1

A dynamical ideal is a triple $(\Gamma \curvearrowright X, I)$ where Γ is a group acting on the set X and I is an ideal invariant under the group action.

A dynamical ideal can be used to construct a permutation model of set theory:

Definition

Given a dynamical ideal ($\Gamma \curvearrowright X, I$), let V[[X]] denote a model of *ZFCA* using X as the set of atoms. The permutation model associated to the dynamical ideal is the transitive part of $\{A \in V[[X]] : \exists b \in I : pstab(b) \subseteq stab(A)\}.$

Let $(\Gamma \curvearrowright X, I)$ be a dynamical ideal. The dynamical ideal is σ -complete if for every set $a \in I$ and every countable sequence $(b_n : n \in \omega) \subseteq I$ there are group elements $\gamma_n \in \text{pstab}(a)$ such that $\bigcup_n \gamma_n \cdot b_n \in I$.

Theorem

(Zapletal, 2023) Let ($\Gamma \curvearrowright X, I$) be a dynamical ideal. If the dynamical ideal is σ -complete, then the associated permutation model satisfies the axiom of countable choice.

A Tool for σ -completeness

Definition

Let $(Homeo(X) \cap X, I)$ be a dynamical ideal, and let d be a compatible metric on X. We say the dynamical ideal is tight if for all $a, b \in I$ and for all $\varepsilon > 0$, there is $\gamma \in pstab(a)$ such that $\gamma \cdot b \subseteq Ball(a, \varepsilon)$.

Proposition

(Y.) Let *I* be the ideal of countable closed sets on a metrizable space *X*. If the dynamical ideal ($Homeo(X) \frown X, I$) is tight, then it is σ -complete.

Proof.

Choose γ_n such that $\gamma_n \cdot b_n \subseteq Ball(a, 1/n)$ and use sequential closure to show that $a \cup \bigcup \gamma_n \cdot b_n$ is closed.

Example

(Y.) Let $X = 2^{\omega}$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \frown X, I)$ is tight.

- Let a, b, ε be given. Let C be a finite cover of a by pairwise disjoint balls of radius < ε.</p>
- ② Let D be a finite cover of b by disjoint balls such that UD is disjoint from UC.
- **③** By induction on \mathcal{D} , move sets in \mathcal{D} to $\bigcup \mathcal{C}$.

Examples of Tight Ideals

Example

(Y.) Let $X = \mathbb{R}^n$ and I the ideal generated by countable compact sets. Then $(Homeo(X) \frown X, I)$ is tight.

- Let a, b, ε be given, and let C cover of a by pairwise disjoint balls of radius < ε with boundaries disjoint from b.
- **2** Replace *b* with $b \setminus \bigcup C$ and *a* with $a \cup (b \cap \bigcup C)$.
- Solution Let \mathcal{D} cover b by pairwise disjoint balls with $\bigcup \mathcal{D} \cap \bigcup \mathcal{C} \neq \emptyset$.
- Given C ∈ C and D ∈ D, find a set K which is the image of the unit circle under a self-homeomorphism of ℝⁿ, contains C and D and does not meet any other set in either cover.
- Apply the Annulus Theorem to the region obtained in the previous step.

Modifications

Example

(Y.) Let $X = \mathbb{R}^n$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \frown X, I)$ is tight.

Proof.

Given $a, b \in I$, tile \mathbb{R}^n with "cubes" such that the boundaries avoid a, b. Now deal with each cube individually.

Example

(Y.) Let $X = [0,1]^n$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \frown X, I)$ is tight.

Proof.

Use a sphere to separate the cube into two parts which can be dealt with individually.

Proposition

Let (X, d) be a separable metric space, and let I contain all countable closed sets. Then $(Iso(X, d) \frown (X, d), I)$ is not σ -complete.

- Let $a = \emptyset$ and for each n let b_n be a 1/n net of X.
- **2** Note that regardless of the choice of γ_n , $\bigcup \gamma_n \cdot b_n$ will be a dense set.

Let $(\Gamma \cap X, I)$ be a dynamical ideal. It has cofinal orbits if for every $a \in I$ there exists a $b \in I$ which is *a*-large: for every $c \in I$ there exists $\gamma \in pstab(a)$ such that $c \subseteq \gamma \cdot b$.

Theorem

(Zapletal, 2023) Let ($\Gamma \curvearrowright X, I$) be a dynamical ideal with cofinal orbits. The corresponding permutation model satisfies the axiom of well-ordered choice.

Example

(Y., independently discovered by M. Elekes) Let $X = [0, 1]^n$, and I the ideal generated by closed nowhere dense sets. Then $(Homeo(X) \frown X, I)$ has cofinal orbits.

The argument involves building a Sierpiński carpet on top of nowhere dense sets:

Sierpiński Carpet

Definition

 $A \subseteq X = [0,1]^n$ is an n-1-dimensional Sierpiński carpet filling X if

- A is closed nowhere dense
- 2 $bd(X) \subseteq A$
- So The set of components of X \ A, {U_i : i ∈ ω} is such that diam(U_i) → 0
- $\{\overline{U_i}: i \in \omega\}$ is pairwise disjoint

The following is a corollary of theorems of Whyburn (n = 1, 1958) and Cannon ($n \ge 2, 1972$):

Lemma

Given Sierpiński carpets $A, B \subseteq X$, there is a self-homeomorphism of X such that h(A) = B and h|bd(X) = id.

Lemma

Given $A \subseteq [0, 1]^n$, there is a Sierpiński Carpet B filling $[0, 1]^n$ such that $A \subseteq B$.

Proof.

Fix a countable dense subset $\{x_i : i \in \omega\}$ and construct U_i centered at x_i such that

• diam
$$(U_i) < 1/i$$

2 $\overline{U_i}$ is disjoint from A and $\overline{U_j}$ for j < i.

In the end, let $B = [0,1]^n \setminus \bigcup U_i$.

NWD has Cofinal Orbits

We are finally ready to state the proof that $Homeo([0,1]^n \frown [0,1]^n, NWD)$ has cofinal orbits.

- **(**) Given $a \in I$, let $K \supseteq a$ be a Sierpiński carpet filling $[0, 1]^n$.
- Por each complementary component U_i of [0, 1]ⁿ \ K, let b_i be a Sierpiński carpet filling U_i. Let b = K ∪ U b_i.
- Siven c ∈ I, to see b is a-large, apply the corollary from Whyburn and Cannon to each U
 _i to get γ_i which moves b_i onto the corresponding portion of c.
- Finally, paste all of the γ_i together.

Let I_C be an ideal on $[0,1]^n$ and define a corresponding ideals on \mathbb{R}^n :

 $I_{S} = \{a : \text{for any homeomorphic image of the cube } C, a \cap C \in I_{C} \}$ $I_{SB} = \{a : a \in I_{S} \text{ and } a \text{ is bounded} \}$

Proposition

(Y.) If $bd[0,1]^n \in I_C$ and $(Homeo([0,1]^n) \curvearrowright [0,1]^n, I_C)$ has cofinal orbits, then so does $(Homeo(\mathbb{R}^n) \curvearrowright \mathbb{R}^n, I_S)$ as well as $(Homeo(\mathbb{R}^n) \curvearrowright \mathbb{R}^n, I_{SB})$.

Proof.

Tile the space with copies of the cube.

- Ooes the result for the ideal of countable closed sets generalize to infinite-dimensional space?
- Ooes the result for the ideal of closed nowhere dense sets generalize to infinite-dimensional space?
- In R², the ideal of compact 0-dimensional sets satisfies a criterion that implies the permutation model satisfies the axiom of dependent choice. Can the ideal be shown to have cofinal orbits?
- Is there a uniform way to make connections between an ideal of closed sets and the corresponding ideal of compact sets?

Thank you!