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Concepts in linear dynamics
Let X be a separable Banach space X ,

T : X → X

a (continuous, linear) operator.

A vector x ∈ X is called hypercyclic for T if its orbit

orb(x ,T ) = {x ,Tx ,T 2x , . . .} is dense in X .

Then T is called a hypercyclic operator.
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Concepts in linear dynamics
By Birkhoff, T is hypercyclic if and only if T is topologically transitive,
that is, for any non-empty open sets U,V ⊂ X , there is n ∈ N such that

T n(U) ∩ V ̸= ∅.

U
V

T
n

A stronger notion is that of (topological) mixing.

An operator T is called mixing if, for any non-empty open sets
U,V ⊂ X , there is N ∈ N such that, for any n ≥ N,

T n(U) ∩ V ̸= ∅.

It’s equivalent to saying that each subsequence (T nk )k admits a dense
orbit.
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Concepts in linear dynamics
The first sufficient condition for hypercyclicity:

Theorem (Kitai, thesis 1982)
Suppose that there are dense subsets X0, Y0 ⊂ X and a mapping
S : Y0 → Y0 such that

1 ∀x ∈ X0, T nx → 0;
2 ∀y ∈ Y0, Sny → 0;
3 ∀y ∈ Y0, TSy = y.

Then T is hypercyclic.

The conditions can be greatly weakened (Hypercyclicity Criterion).

Our point here: Kitai’s criterion even implies that T is mixing.

J. Shapiro (2001): Does every mixing operator satisfy Kitai’s criterion?

S. Grivaux (2005): NO!
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Classes of hypercyclic operators
The first hypercyclic operator on a Banach space is due to Rolewicz:

T : X → X , (xn)n → (xn+1)n

= (xf (n))n

where

X = ℓp
(|λ|−n)n

=
{
(xn)n≥0 :

∞∑
n=0

|xn|p
1

|λ|n
< ∞

}
, |λ| > 1,1 ≤ p < ∞.

It’s a composition operator!

Another well-known example is the translation operator (Birkhoff)

T : H(C) → H(C), φ(z) → φ(z + 1)

= φ(f (z))

It’s a composition operator!
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Classes of hypercyclic operators
Since then, many composition operators have turned out to be
hypercyclic:

• backward shift operators on sequence spaces

• composition operators on spaces of analytic functions

• composition operators on spaces of continuous functions

And for many of these classes, hypercyclicity has been characterized.
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Classes of hypercyclic operators
In 2018, Bayart, Darji and Pires considered composition operators on
spaces of measurable functions.

Let (X ,B, µ) be a σ-finite measure space, f : X → X a measurable
map. Then

Tf : Lp(X ) → Lp(X ), φ → φ ◦ f

is a composition operator (1 ≤ p < ∞).
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Theorem (Bayart, Darji, Pires)
Tf is hypercyclic if and only if, for every measurable set A of finite
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I cheat here slightly: there are additional measurability assumptions on f ...
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Theorem (Bayart, Darji, Pires)
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Our problem

Theorem (Bayart, Darji, Pires)
Tf is mixing if and only if, for every measurable set A of finite measure
there are measurable subsets Bn ⊂ A such that

µ(A \ Bn) → 0, µ(f−n(Bn)) → 0 and µ(f n(Bn)) → 0.

Let’s now assume that f is bijective and bimeasurable.

Theorem (Gomes, G-E)
Tf satisfies Kitai’s criterion if and only if, for every measurable set A of
finite measure and every ε > 0 there is a measurable subset B ⊂ A
such that

µ(A \ B) < ε, µ(f−n(B)) → 0 and µ(f n(B)) → 0.

What’s going on here? Does every mixing Tf satisfy Kitai’s criterion?

Answer: NO!
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Our problem

Theorem (Gomes, G-E)
There is a σ-finite measure space (X ,B, µ) and a composition operator

Tf : Lp(X ) → Lp(X ), φ → φ ◦ f

that is mixing but does not satisfy Kitai’s criterion (1 ≤ p < ∞).

The space is

X =
∞⋃

n=−∞

(
{n} × [0,1]

)
and the map is

f : (n, x) → (n + 1, x).

: : : : : :

n = −2 n = −1 n = 0 n = 1
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Tf is mixing: ∀A, µ(A) < ∞, ∃Bn ⊂ A

µ(A \ Bn) → 0, µ(f−n(Bn)) → 0 and µ(f n(Bn)) → 0.
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Tf does not satisfy Kitai: ∀A, µ(A) < ∞, ∀ε > 0 ∃B ⊂ A

µ(A \ B) < ε, µ(f−n(B)) → 0 and µ(f n(B)) → 0.
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Final remarks:
• Our counterexample works for any Lp (and for any reasonable
function space).

• We can achieve that both “T nx → 0” and “Sny → 0” fail.

• It’s a dissipative system (X =
⋃̇

n∈Zf n(W ) with W = {0} × [0,1]),
but it is not of bounded distortion.

• Grivaux’s example: I + Bw on ℓp – the proof is short, but uses an
operator theoretic result.

• Our result seems to be the first characterization of when Kitai holds
(where Kitai ̸= mixing).

• Darji, Pires (2021) characterize when the Frequent Hypercyclicity
Criterion = Chaoticity Criterion holds (p ≥ 2).
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