Compactness and averaging operators on function spaces

Katsuhisa Koshino

Kanagawa University

11th July 2024

(日) (문) (문) (문) (문)

Outline

2 Compact sets in Lebesgue spaces

Compactness of averaging operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣

Throughout this talk, $X = (X, \mathcal{M}, \mu)$ is a metric measure space satisfying the following:

- (Borel) \mathcal{M} contains the Borel sets of X;
- (Borel-regular) Each subset E ⊂ X is contained in some Borel set B ⊂ X s.t. μ(B \ E) = 0;

• For
$$\forall x \in X$$
 and $\forall r \in (0,\infty)$,
 $0 < \mu(B(x,r)) < \infty$.

For $p \in [1, \infty)$, let $L^{p}(X) = (L^{p}(X), \|\cdot\|_{p})$ be the Lebesgue space on X.

 \mathcal{M} is the collection of measurable sets in X and μ is a measure on X. $B(x,r) \subset X$ is the closed ball centered at x with radius r. A normed linear space $E(X) = (E(X), \|\cdot\|_E) \subset L^0(X)$ is a Banach function space on X if for $\forall f, \forall g \in E(X), \forall \{f_n\} \subset E(X),$ (B1) $\|f\|_E = \||f|\|_E$, and $\|f\|_E = 0 \Leftrightarrow f = 0$ a.e.; (B2) $0 \leq g \leq f$ a.e. $\Rightarrow \|g\|_E \leq \|f\|_E$; (B3) $0 \leq f_n \uparrow f$ a.e. $\Rightarrow \|f_n\|_E \uparrow \|f\|_E$; and for $\forall A \in \mathcal{M}$ with $\mu(A) < \infty$, (B4) $\chi_A \in E(X)$ and $\|\chi_A\|_E < \infty$; (B5) $\exists \alpha(A) \in (0, \infty)$ s.t. $\int_A |f| d\mu \leq \alpha(A) \|f\|_E$ for $\forall f \in E(X)$.

 A normed linear space $E(X) = (E(X), \|\cdot\|_E) \subset L^0(X)$ is a Banach function space on X if for $\forall f, \forall g \in E(X), \forall \{f_n\} \subset E(X),$ (B1) $\|f\|_E = \||f|\|_E$, and $\|f\|_E = 0 \Leftrightarrow f = 0$ a.e.; (B2) $0 \leq g \leq f$ a.e. $\Rightarrow \|g\|_E \leq \|f\|_E$; (B3) $0 \leq f_n \uparrow f$ a.e. $\Rightarrow \|f_n\|_E \uparrow \|f\|_E$; and for $\forall A \in \mathcal{M}$ with $\mu(A) < \infty$, (B4) $\chi_A \in E(X)$ and $\|\chi_A\|_E < \infty$; (B5) $\exists \alpha(A) \in (0, \infty)$ s.t. $\int_A |f| d\mu \leq \alpha(A) \|f\|_E$ for $\forall f \in E(X)$.

Example (Lebesgue space) $L^{p}(X)$ is a Banach function space. (B5) By Hölder's inequality, for $\forall A \in \mathcal{M}$,

$$\int_{A} |f(x)| d\mu(x) \leq (\mu(A))^{1-1/\rho} \|f\|_{\rho},$$

so we can choose $\alpha(A) = (\mu(A))^{1-1/p}$.

Theorem 1 (A.N. Kolmogorov (1931), M. Riesz (1933))

$$F \underset{\text{bounded}}{\subset} L^{p}(\mathbb{R}^{n})$$
 is relatively compact \Leftrightarrow

• For
$$\forall \epsilon > 0$$
, $\exists \delta > 0$ s.t. $\|\tau_a f - f\|_p < \epsilon$ for $\forall f \in F$ and $\forall a \in \mathbb{R}^n$ with $|a| < \delta$.

For [∀] ε > 0, [∃]r > 0 s.t.
$$\|f\chi_{\mathbb{R}^n \setminus B(\mathbf{0},r)}\|_p < \epsilon$$
 for [∀]f ∈ F.

For
$$f: \mathbb{R}^n \to \mathbb{R}$$
 and $a \in \mathbb{R}^n$, $\tau_a f(x) = f(x \equiv a)$, $\sigma \in \mathbb{R}^n$, $\sigma \in \mathbb{R}^n$, $\sigma \in \mathbb{R}^n$

$$A_r f(x) = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) d\mu(y),$$

which is called the *averaging operator* on E(X).

For $\forall f \in L^0(X)$, $A_r f \in L^0(X)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$A_r f(x) = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) d\mu(y),$$

which is called the *averaging operator* on E(X).

Problem

Give a criterion for subsets of $L^{p}(X)$ to be compact.

For $\forall f \in L^0(X)$, $A_r f \in L^0(X)$.

$$A_r f(x) = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) d\mu(y),$$

which is called the *averaging operator* on E(X).

Problem

Give a criterion for subsets of $L^{p}(X)$ to be compact.

An operator $T : E_1 \to E_2$ between normed linear spaces is compact if for ${}^{\forall}A \underset{bounded}{\subset} E_1$, T(A) is relatively compact in E_2 .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

For $\forall f \in L^0(X)$, $A_r f \in L^0(X)$.

$$A_r f(x) = \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) d\mu(y),$$

which is called the *averaging operator* on E(X).

Problem

Give a criterion for subsets of $L^{p}(X)$ to be compact.

An operator $T : E_1 \to E_2$ between normed linear spaces is compact if for ${}^{\forall}A \underset{bounded}{\subset} E_1$, T(A) is relatively compact in E_2 .

Problem

Give a sufficient and necessary condition for $A_r: E(X) \to E(X)$ to be compact.

For
$$\forall f \in L^0(X)$$
, $A_r f \in L^0(X)$.

Compact sets in Lebesgue spaces

X is doubling if $\exists \gamma \geq 1$ s.t. for $\forall x \in X$ and $\forall r > 0$, $\mu(B(x,2r)) \leq \gamma \mu(B(x,r)).$

Compact sets in Lebesgue spaces

X is doubling if $\exists \gamma \geq 1$ s.t. for $\forall x \in X$ and $\forall r > 0$, $\mu(B(x,2r)) \leq \gamma \mu(B(x,r)).$

Theorem 2 (P. Górka-A. Macios (2014))

Let X be doubling and $p \in (1, \infty)$. Suppose that

(•) for $\forall r > 0$,

 $\inf\{\mu(B(x,r)) \mid x \in X\} > 0.$

Then $F \underset{bounded}{\subset} L^{p}(X)$ is relatively compact \Leftrightarrow Solution For $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. for $\forall f \in F$ and $\forall r \in (0, \delta)$, $\|A_{r}f - f\|_{p} < \epsilon$. For $\forall \epsilon > 0$, $\exists E \underset{bounded}{\subset} X$ s.t. $\|f\chi_{X \setminus E}\|_{p} < \epsilon$ for $\forall f \in F$. For r > 0, X is r-doubling if $\exists \gamma \ge 1$ s.t. for $\forall x \in X$, $\mu(B(x, 2r)) \le \gamma \mu(B(x, r)).$

◆□▶ ◆□▶ ★∃▶ ★∃▶ ヨー のへで

For r > 0, X is r-doubling if $\exists \gamma \ge 1$ s.t. for $\forall x \in X$,

$$\mu(B(x,2r)) \leq \gamma \mu(B(x,r)).$$

Remark (doubling) X is doubling $\Rightarrow X$ is r-doubling for $\forall r > 0$.

For r > 0, X is r-doubling if $\exists \gamma \ge 1$ s.t. for $\forall x \in X$,

$$\mu(B(x,2r)) \leq \gamma \mu(B(x,r)).$$

Remark (doubling) X is doubling \Rightarrow X is *r*-doubling for $\forall r > 0$.

X has the Vitali covering property (abbrev. VCP) if

 Let [∀]A ⊂ X and B be any family of closed balls centered in A with uniformly bounded radii s.t. for [∀]x ∈ A, [∃]r > 0 s.t. B(x,r) ∈ B and inf{s > 0 | B(x,s) ∈ B} = 0. Then [∃]B' ⊂ B consisting of pairwise disjoint countable closed balls s.t.

$$\mu(A\setminus igcup \mathcal{B}')=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

For r > 0, X is r-doubling if $\exists \gamma \ge 1$ s.t. for $\forall x \in X$,

$$\mu(B(x,2r)) \leq \gamma \mu(B(x,r)).$$

Remark (doubling) X is doubling \Rightarrow X is *r*-doubling for $\forall r > 0$.

X has the Vitali covering property (abbrev. VCP) if

 Let [∀]A ⊂ X and B be any family of closed balls centered in A with uniformly bounded radii s.t. for [∀]x ∈ A, [∃]r > 0 s.t. B(x,r) ∈ B and inf{s > 0 | B(x,s) ∈ B} = 0. Then [∃]B' ⊂ B consisting of pairwise disjoint countable closed balls s.t.

$$\mu(A\setminus igcup \mathcal{B}')=0.$$

Theorem (Vitali) X is doubling \Rightarrow X has the VCP.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem A (K. (2023))

Let X be r-doubling for $\forall r > 0$ and having the VCP. Suppose that

(*) for $\forall x \in X$ and $\forall r > 0$,

 $\mu(B(x,r) \triangle B(y,r)) \rightarrow 0 \text{ as } y \rightarrow x.$

Then $F \underset{bounded}{\subset} L^{p}(X)$ is relatively compact \Leftrightarrow • For $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. for $\forall f \in F$ and $\forall r \in (0, \delta)$, $||A_{r}f - f||_{p} < \epsilon$. • For $\forall \epsilon > 0$, $\exists E \underset{bounded}{\subset} X$ s.t. $||f\chi_{X \setminus E}||_{p} < \epsilon$ for $\forall f \in F$.

(*) For $\forall x \in X$, $(0,\infty) \ni r \mapsto \mu(B(x,r)) \in (0,\infty)$ is continuous. (*) For $\forall x \in X$ and $\forall r \in (0, \infty)$, $\mu(B(x,r) \triangle B(y,r)) \rightarrow 0 \text{ as } y \rightarrow x.$ (†) For $\forall r \in (0,\infty)$, $X \ni x \mapsto \mu(B(x,r)) \in (0,\infty)$ is continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Then $(\star) \Rightarrow (\star) \Rightarrow (\dagger)$.

(*) For $\forall x \in X$, $(0,\infty) \ni r \mapsto \mu(B(x,r)) \in (0,\infty)$ is continuous. (*) For $\forall x \in X$ and $\forall r \in (0, \infty)$, $\mu(B(x,r) \triangle B(y,r)) \rightarrow 0 \text{ as } y \rightarrow x.$ (†) For $\forall r \in (0,\infty)$, $X \ni x \mapsto \mu(B(x,r)) \in (0,\infty)$ is continuous. Then $(\star) \Rightarrow (\star) \Rightarrow (\dagger)$. (•) For $\forall r > 0$. $\inf\{\mu(B(x, r)) \mid x \in X\} > 0.$

There are no implications between (\bullet) and (*).

E 996

Remark (Hilbert space) X is infinite and separable $\Rightarrow L^p(X) \approx \ell_2$.

 ℓ_2 is the separable Hilbert space, ℓ_2^f is the linear span of the canonical orthonormal basis on ℓ_2 , and **Q** is the Hilbert cube.

æ (

Remark (Hilbert space) X is infinite and separable $\Rightarrow L^p(X) \approx \ell_2$.

Let

 $LIP_b(X) = \{ f \in L^p(X) \mid f \text{ is Lipschitz with a bounded support} \}.$

 ℓ_2 is the separable Hilbert space, ℓ_2^f is the linear span of the canonical orthonormal basis on ℓ_2 , and **Q** is the Hilbert cube.

E 990

Remark (Hilbert space) X is infinite and separable $\Rightarrow L^p(X) \approx \ell_2$.

Let

 $LIP_b(X) = \{ f \in L^p(X) \mid f \text{ is Lipschitz with a bounded support} \}.$

Corollary (K. (2023))

Let X be non-degenerate, separable, r-doubling for $\forall r > 0$ and having the VCP. Suppose that

(*) for $\forall x \in X$, $(0,\infty) \ni r \mapsto \mu(B(x,r)) \in (0,\infty)$ is continuous.

Then $(L^p(X), LIP_b(X)) \approx (\ell_2 \times \mathbf{Q}, \ell_2^f \times \mathbf{Q}).$

 ℓ_2 is the separable Hilbert space, ℓ_2^f is the linear span of the canonical orthonormal basis on ℓ_2 , and **Q** is the Hilbert cube.

Compactness of averaging operators

 $\|\cdot\|_{E}$ is absolutely continuous with respect to 1 if $\|\chi_{A_{i}}\|_{E} \to 0$ for $\forall \{A_{i}\} \subset \mathcal{M}$ with $\chi_{A_{i}} \to 0$ a.e..

Compactness of averaging operators

 $\|\cdot\|_{E}$ is absolutely continuous with respect to 1 if $\|\chi_{A_{i}}\|_{E} \to 0$ for $\forall \{A_{i}\} \subset \mathcal{M}$ with $\chi_{A_{i}} \to 0$ a.e..

Theorem B (K. (202?))

Let r > 0. Suppose that $A_r(E(X)) \subset E(X)$ and

2
$$\inf\{\mu(B(x,r)) \mid x \in X\} > 0;$$

If or [∀]x ∈ X,
$$\mu(B(y, r)) \rightarrow \mu(B(x, r))$$
 and
 $\alpha(B(x, r) \triangle B(y, r)) \rightarrow 0$ as $y \rightarrow x$;

Then $\mu(X) < \infty \Rightarrow A_r$ is compact.

Theorem C (K. (202?)) Let r > 0. Suppose that $A_r(E(X)) \subset E(X)$ and a X is r-doubling; a $\sup \left\{ \left\| \frac{\alpha(B(x,r))\chi_{B(x,2r)}}{\mu(B(x,r))} \right\|_E \mid x \in X \right\} < \infty$ for $\exists \alpha$ as in (B5). Then A_r is compact $\Rightarrow X$ is bounded.

《曰》 《聞》 《臣》 《臣》 三臣

Corollary (K. (202?))

Let $p, q \in (1, \infty)$ and r > 0. Suppose that

X has the VCP;

 $y \to x$.

- **2** X is s-doubling for $\forall s \ge r$;
- for $\forall x \in X$, $\mu(B(x,r) \triangle B(y,r)) \rightarrow 0$ as

Then $A_r : L^{p,q}(X) \to L^{p,q}(X)$ is compact $\Leftrightarrow X$ is bounded.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $L^{p,q}(X)$ is the Lorentz space on X.