On property (B) in function spaces

Kacper Kucharski

Joint work with Mikołaj Krupski & Witold Marciszewski

University of Warsaw

SUMTOPO 2024

E

∃ →

▲ 1 →

-

< □ ▶

Ξ

If X is a topological space, then by C(X) denote the set of all real-valued continuous functions on X.

 $\mathcal{O} \mathcal{O} \mathcal{O}$

ΞÞ

If X is a topological space, then by C(X) denote the set of all real-valued continuous functions on X.

Below we will consider the set C(X) with the following topologies:

• $C_p(X) \equiv$ pointwise convergence topology

If X is a topological space, then by C(X) denote the set of all real-valued continuous functions on X.

Below we will consider the set C(X) with the following topologies:

- $C_p(X) \equiv$ pointwise convergence topology
- $C_k(X) \equiv \text{compact-open topology}$

If X is a topological space, then by C(X) denote the set of all real-valued continuous functions on X.

Below we will consider the set C(X) with the following topologies:

- $C_p(X) \equiv$ pointwise convergence topology
- $C_k(X) \equiv \text{compact-open topology}$
- $C_w(K) \equiv$ weak topology on a Banach space C(K) for compact K

Is it true that for any infinite compact space K the spaces $C_p(K)$ and $C_w(K)$ are **not** homeomorphic?

- ₹ ₹ ▶

▲ 伊 ▶ ▲ 王 ▶

 $\langle \Box \rangle$

1

 \mathcal{A}

Is it true that for any infinite compact space K the spaces $C_p(K)$ and $C_w(K)$ are **not** homeomorphic?

Property (B)

We will say that a topological space X has property (B) if there exists a sequence $(A_n)_{n \in \mathbb{N}}$ of closed nowhere dense subsets of X absorbing all compact subsets of X i.e. for each compact $K \subset X$ there is $n \in \mathbb{N}$ s.t. $K \subset A_n$.

=

SQ (V

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

Is it true that for any infinite compact space K the spaces $C_p(K)$ and $C_w(K)$ are **not** homeomorphic?

Property (B)

We will say that a topological space X has property (B) if there exists a sequence $(A_n)_{n \in \mathbb{N}}$ of closed nowhere dense subsets of X absorbing all compact subsets of X i.e. for each compact $K \subset X$ there is $n \in \mathbb{N}$ s.t. $K \subset A_n$.

• All spaces with property (B) are meager in themselves.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Is it true that for any infinite compact space K the spaces $C_p(K)$ and $C_w(K)$ are **not** homeomorphic?

Property (B)

We will say that a topological space X has property (B) if there exists a sequence $(A_n)_{n \in \mathbb{N}}$ of closed nowhere dense subsets of X absorbing all compact subsets of X i.e. for each compact $K \subset X$ there is $n \in \mathbb{N}$ s.t. $K \subset A_n$.

- All spaces with property (B) are meager in themselves.
- All infinite dimensional Banach spaces endowed with the weak topology have property (*B*)

SQ (V

- 4 同 ト 4 豆 ト

Property (B) was introduced in the previous work of M. Krupski & W. Marciszewski as a tool to *possibly* distinguish pointwise and weak topologies on the space C(K) for a compact space K.

Ξ

Property (B) was introduced in the previous work of M. Krupski & W. Marciszewski as a tool to *possibly* distinguish pointwise and weak topologies on the space C(K) for a compact space K.

Theorem (Krupski–Marciszewski, 2017)

For any compact space K TFAE:

- K is scattered
- 2 $C_p(K)$ is Fréchet–Urysohn

Property (B) was introduced in the previous work of M. Krupski & W. Marciszewski as a tool to *possibly* distinguish pointwise and weak topologies on the space C(K) for a compact space K.

Theorem (Krupski–Marciszewski, 2017)

For any compact space *K* TFAE:

- K is scattered
- 2 $C_p(K)$ is Fréchet–Urysohn
- $C_p(K)$ does not have the property (B)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Property (B) was introduced in the previous work of M. Krupski & W. Marciszewski as a tool to *possibly* distinguish pointwise and weak topologies on the space C(K) for a compact space K.

Theorem (Krupski–Marciszewski, 2017)

For any compact space *K* TFAE:

K is scattered

- 2 $C_p(K)$ is Fréchet–Urysohn $\boldsymbol{\boldsymbol{\xi}}$
- $C_p(K)$ does not have the property (B)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Property (B) was introduced in the previous work of M. Krupski & W. Marciszewski as a tool to *possibly* distinguish pointwise and weak topologies on the space C(K) for a compact space K.

Theorem (Krupski–Marciszewski, 2017)

For any compact space *K* TFAE:

- K is scattered
- 2 $C_p(K)$ is Fréchet–Urysohn
- $C_p(K)$ does not have the property (B)

Problem (Krupski–Marciszewski, 2017)

Characterize all Tychonoff spaces X s.t. the space of real-valued continuous functions with the pointwise convergence topology $C_p(X)$ satisfies property (B).

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

 \equiv

• a family \mathcal{A} of subsets of a space X is **discrete**, if each point $x \in X$ has an open nbhd U intersecting at most one element of \mathcal{A} .

- a family \mathcal{A} of subsets of a space X is **discrete**, if each point $x \in X$ has an open nbhd U intersecting at most one element of \mathcal{A} .
- an **expansion** of a family \mathcal{A} is any family $\{U(A) : A \in \mathcal{A}\}$ satisfying $A \subset U(A)$ for any $A \in \mathcal{A}$.

- a family \mathcal{A} of subsets of a space X is **discrete**, if each point $x \in X$ has an open nbhd U intersecting at most one element of \mathcal{A} .
- an **expansion** of a family \mathcal{A} is any family $\{U(A) : A \in \mathcal{A}\}$ satisfying $A \subset U(A)$ for any $A \in \mathcal{A}$.

Theorem (van Douwen, Pytkeev, Tkachuk (independently))

For any space X TFAE:

 every sequence of pairwise disjoint finite subsets of X has a subsequence with a discrete open expansion

SQ (?

- a family \mathcal{A} of subsets of a space X is **discrete**, if each point $x \in X$ has an open nbhd U intersecting at most one element of \mathcal{A} .
- an **expansion** of a family \mathcal{A} is any family $\{U(A) : A \in \mathcal{A}\}$ satisfying $A \subset U(A)$ for any $A \in \mathcal{A}$.

Theorem (van Douwen, Pytkeev, Tkachuk (independently))

For any space X TFAE:

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a discrete open expansion
- $C_p(X)$ is Baire

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

- a family \mathcal{A} of subsets of a space X is **discrete**, if each point $x \in X$ has an open nbhd U intersecting at most one element of \mathcal{A} .
- an **expansion** of a family \mathcal{A} is any family $\{U(A) : A \in \mathcal{A}\}$ satisfying $A \subset U(A)$ for any $A \in \mathcal{A}$.

Theorem (van Douwen, Pytkeev, Tkachuk (independently))

For any space X TFAE:

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a discrete open expansion
- 2 $C_p(X)$ is Baire
- 3 $C_p(X)$ is not meager in itself

SQ Q

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- a family \mathcal{A} of subsets of a space X is **discrete**, if each point $x \in X$ has an open nbhd U intersecting at most one element of \mathcal{A} .
- an **expansion** of a family \mathcal{A} is any family $\{U(A) : A \in \mathcal{A}\}$ satisfying $A \subset U(A)$ for any $A \in \mathcal{A}$.

Theorem (van Douwen, Pytkeev, Tkachuk (independently))

For any space X TFAE:

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a discrete open expansion
- $C_p(X)$ is Baire
- $C_p(X)$ is not meager in itself

A family \mathcal{A} of subsets of a space X is **point–finite**, if each point $x \in X$ lies only in finitely many elements of \mathcal{A} .

Ξ

SQ (~

◆□▶ ◆□▶ ◆三▶ ◆三▶

A topological space Z is

- a Fréchet–Urysohn space iff for any A ⊂ Z and x ∈ cl(A) there is a sequence (x_n)_{n∈ℕ} ⊂ A converging to x.
- a κ−Fréchet−Urysohn space iff for any open U ⊂ Z and x ∈ cl(U) there is a sequence (x_n)_{n∈ℕ} ⊂ U converging to x.

A topological space Z is

- a Fréchet−Urysohn space iff for any A ⊂ Z and x ∈ cl(A) there is a sequence (x_n)_{n∈ℕ} ⊂ A converging to x.
- a κ−Fréchet−Urysohn space iff for any open U ⊂ Z and x ∈ cl(U) there is a sequence (x_n)_{n∈ℕ} ⊂ U converging to x.

Theorem (Sakai)

For any space X TFAE:

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a point-finite open expansion
- 2 $C_p(X)$ is a κ -Fréchet-Urysohn space

SQ (~

◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A topological space Z is

- a Fréchet−Urysohn space iff for any A ⊂ Z and x ∈ cl(A) there is a sequence (x_n)_{n∈ℕ} ⊂ A converging to x.
- a κ−Fréchet−Urysohn space iff for any open U ⊂ Z and x ∈ cl(U) there is a sequence (x_n)_{n∈ℕ} ⊂ U converging to x.

Theorem (Sakai)

For any space X TFAE:

PROPERTY (K)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a point-finite open expansion
- 2 $C_p(X)$ is a κ -Fréchet-Urysohn space

E

Proposition

Let Z be any space. If Z is κ -Fréchet-Urysohn then Z does not have the property (B).

| 伊 ▶ ▲ 王 ▶ ▲ 王 ▶

 $\langle \square \rangle$

Ξ

Proposition

Let Z be any space. If Z is κ -Fréchet-Urysohn then Z does not have the property (B).

Main Theorem 1

For any space *X* TFAE:

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a point-finite open expansion
- 2 $C_p(X)$ is κ -Fréchet-Urysohn

=

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Proposition

Let Z be any space. If Z is κ -Fréchet-Urysohn then Z does not have the property (B).

Main Theorem 1

For any space *X* TFAE:

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a point-finite open expansion
- 2 $C_p(X)$ is κ -Fréchet-Urysohn
- $C_p(X)$ does not satisfy property (B)

=

 \mathcal{A}

◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Proposition

Let Z be any space. If Z is κ -Fréchet-Urysohn then Z does not have the property (B).

Main Theorem 1

For any space X TFAE:

- every sequence of pairwise disjoint finite subsets of X has a subsequence with a point-finite open expansion
- 2 $C_p(X)$ is κ -Fréchet-Urysohn
- $C_p(X)$ does not satisfy property (B)

Moreover if X is compact — or even more general: is Čech complete — then all conditions above are equivalent to X being scattered.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

E

 $\bullet \square \bullet$

< 47 ▶

-

∃ →

⊒

Now we need *compact* versions of the properties useful in the C_p -case. Essentially exchange *points* with *compact sets* in the previous definitions.

Essentially exchange **points** with **compact sets** in the previous definitions.

Let X be a space and \mathcal{K} be nonempty collection of nonempty **compact** subsets of X.

Essentially exchange **points** with **compact sets** in the previous definitions.

Let X be a space and \mathcal{K} be nonempty collection of nonempty **compact** subsets of X. We will say that a family \mathcal{K} is:

• moving off, if for any compact $L \subset X$ there is $K \in \mathcal{K}$ s.t. $L \cap K = \emptyset$

Essentially exchange **points** with **compact sets** in the previous definitions.

Let X be a space and \mathcal{K} be nonempty collection of nonempty **compact** subsets of X. We will say that a family \mathcal{K} is:

- moving off, if for any compact $L \subset X$ there is $K \in \mathcal{K}$ s.t. $L \cap K = \emptyset$
- *compact-finite*, if each compact subset $L \subset X$ intersects only finitely many elements of \mathcal{K}

Essentially exchange **points** with **compact sets** in the previous definitions.

Let X be a space and \mathcal{K} be nonempty collection of nonempty **compact** subsets of X. We will say that a family \mathcal{K} is:

- moving off, if for any compact $L \subset X$ there is $K \in \mathcal{K}$ s.t. $L \cap K = \emptyset$
- *compact–finite*, if each compact subset $L \subset X$ intersects only finitely many elements of \mathcal{K}

Theorem (Gruenhage–Ma)

If X is locally compact then TFAE:

- Every moving off family of nonempty compact subsets of X has a countable infinite subfamily with a discrete open expansion
- $C_k(X)$ is Baire

< ロ > < 同 > < 三 > < 三 >

Ξ

Main Theorem 2

For any space X TFAE:

- Every moving off family of nonempty compact subsets of X has a countable infinite subfamily with a compact-finite open expansion
- 2 $C_k(X)$ is κ -Fréchet-Urysohn

=

SQ (V

∃►

= >

Main Theorem 2

For any space X TFAE:

- Every moving off family of nonempty compact subsets of X has a countable infinite subfamily with a compact-finite open expansion
- 2 $C_k(X)$ is κ -Fréchet-Urysohn
- $C_k(X)$ does not satisfy property (B)

=

SQ (V

Main Theorem 2

For any space X TFAE:

- Every moving off family of nonempty compact subsets of X has a countable infinite subfamily with a compact-finite open expansion
- O C_k(X) is κ−Fréchet−Urysohn ← SAKAT
- $C_k(X)$ does not satisfy property (B)

Let X be a space. If X is either scattered or countable, then X satisfies the property (κ) .

| 伊 ▶ ◀ 토 ▶ ◀ 토 ▶

 $\langle \Box \rangle$

E

Let X be a space. If X is either scattered or countable, then X satisfies the property (κ) .

Question 1 (Tkachuk)

Suppose that all functionally bounded subsets of X are finite. Must X have the property (κ) ?

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Let $A \subset \mathbb{R}$ be Lebesgue measurable set and let $x_0 \in \mathbb{R}$.

Kacper Kucharski

Property (B) in function spaces

SUMTOPO 2024 11 / 12

E

Let $A \subset \mathbb{R}$ be Lebesgue measurable set and let $x_0 \in \mathbb{R}$. The density of the set A in point x_0 is the number

$$\lim_{\epsilon \to 0} \frac{\lambda(A \cap [x_0 - \epsilon, x_0 + \epsilon])}{2\epsilon}$$

SQ (V

Let $A \subset \mathbb{R}$ be Lebesgue measurable set and let $x_0 \in \mathbb{R}$. The density of the set A in point x_0 is the number

$$\lim_{\epsilon\to 0}\frac{\lambda(A\cap [x_0-\epsilon,x_0+\epsilon])}{2\epsilon}$$

Define the topology au as follows:

• for point $x \in \mathbb{R}$ let Z_x denote the family of all closed subsets of \mathbb{R} with density of x equal to 0

Let $A \subset \mathbb{R}$ be Lebesgue measurable set and let $x_0 \in \mathbb{R}$. The density of the set A in point x_0 is the number

$$\lim_{\varepsilon \to 0} \frac{\lambda(A \cap [x_0 - \epsilon, x_0 + \epsilon])}{2\epsilon}$$

Define the topology au as follows:

- for point $x \in \mathbb{R}$ let Z_x denote the family of all closed subsets of \mathbb{R} with density of x equal to 0
- the basic open nbhd of a point x in τ is of the form $\{x\} \cup (\mathbb{R} \setminus A)$ for $A \in Z_x$

SQ (?

Let $A \subset \mathbb{R}$ be Lebesgue measurable set and let $x_0 \in \mathbb{R}$. The density of the set A in point x_0 is the number

$$\lim_{\varepsilon \to 0} \frac{\lambda(A \cap [x_0 - \epsilon, x_0 + \epsilon])}{2\epsilon}$$

Define the topology au as follows:

- for point $x \in \mathbb{R}$ let Z_x denote the family of all closed subsets of \mathbb{R} with density of x equal to 0
- the basic open nbhd of a point x in τ is of the form {x} ∪ (ℝ \A) for A ∈ Z_x

Proposition

The space (\mathbb{R}, τ) is Tychonoff, it doesn't satisfy property (κ) and all τ -functionally bounded sets are finite.

SUMTOPO 2024 11 / 12

If K is compact and non-scattered then $C_p(K)$ has (B).

Kacper Kucharski

- ∃ →

< □ ▶

-

Ξ

SQ (?

If K is compact and non-scattered then $C_p(K)$ has (B).

Question 2 (Tkachuk)

Let X be a first countable pseudocompact non-scattered space. Must $C_p(X)$ have the property (B)?

=

If K is compact and non-scattered then $C_p(K)$ has (B).

Question 2 (Tkachuk)

Let X be a first countable pseudocompact non-scattered space. Must $C_p(X)$ have the property (B)?

Yes. If $C_p(X)$ does not satisfy (B) then X has (κ) .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□ ▲ 三 ▲ 三 ▲ 三 ■

If K is compact and non-scattered then $C_p(K)$ has (B).

Question 2 (Tkachuk)

Let X be a first countable pseudocompact non-scattered space. Must $C_p(X)$ have the property (B)?

Yes. If $C_p(X)$ does not satisfy (B) then X has (κ) . By another theorem of Tkachuk a first countable pseudocompact space with property (κ) has to be scattered.

1

SQ (P