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Framework

All spaces considered are Tychono↵ topological spaces.

If X is a topological space, then by C (X ) denote the set of all real–valued
continuous functions on X .

Below we will consider the set C (X ) with the following topologies:

Cp(X ) ⌘ pointwise convergence topology

Ck(X ) ⌘ compact–open topology

Cw (K ) ⌘ weak topology on a Banach space C (K ) for compact K
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Motivation

General problem

Is it true that for any infinite compact space K the spaces Cp(K ) and
Cw (K ) are not homeomorphic?

Property (B)

We will say that a topological space X has property (B) if there exists a
sequence (An)n2N of closed nowhere dense subsets of X absorbing all
compact subsets of X i.e. for each compact K ⇢ X there is n 2 N s.t.
K ⇢ An.

All spaces with property (B) are meager in themselves.

All infinite dimensional Banach spaces endowed with the weak
topology have property (B)
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Property (B)

Property (B) was introduced in the previous work of M. Krupski & W.
Marciszewski as a tool to possibly distinguish pointwise and weak
topologies on the space C (K ) for a compact space K .

Theorem (Krupski–Marciszewski, 2017)

For any compact space K TFAE:

1 K is scattered

2 Cp(K ) is Fréchet–Urysohn

3 Cp(K ) does not have the property (B)

Problem (Krupski–Marciszewski, 2017)

Characterize all Tychono↵ spaces X s.t. the space of real–valued
continuous functions with the pointwise convergence topology Cp(X )
satisfies property (B).

Kacper Kucharski Property (B) in function spaces SUMTOPO 2024 4 / 12



Property (B)

Property (B) was introduced in the previous work of M. Krupski & W.
Marciszewski as a tool to possibly distinguish pointwise and weak
topologies on the space C (K ) for a compact space K .

Theorem (Krupski–Marciszewski, 2017)

For any compact space K TFAE:

1 K is scattered

2 Cp(K ) is Fréchet–Urysohn
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When are the Cp–spaces Baire?

Recall that

a family A of subsets of a space X is discrete, if each point x 2 X
has an open nbhd U intersecting at most one element of A.

an expansion of a family A is any family {U(A) : A 2 A} satisfying
A ⇢ U(A) for any A 2 A.

Theorem (van Douwen, Pytkeev, Tkachuk (independently))

For any space X TFAE:

1 every sequence of pairwise disjoint finite subsets of X has a
subsequence with a discrete open expansion

2 Cp(X ) is Baire

3 Cp(X ) is not meager in itself

A family A of subsets of a space X is point–finite, if each point x 2 X
lies only in finitely many elements of A.
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Another piece of context

A topological space Z is

a Fréchet–Urysohn space i↵ for any A ⇢ Z and x 2 cl(A) there is a
sequence (xn)n2N ⇢ A converging to x .

a –Fréchet–Urysohn space i↵ for any open U ⇢ Z and x 2 cl(U)
there is a sequence (xn)n2N ⇢ U converging to x .

Theorem (Sakai)

For any space X TFAE:

1 every sequence of pairwise disjoint finite subsets of X has a
subsequence with a point–finite open expansion

2 Cp(X ) is a –Fréchet–Urysohn space
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Main result for Cp–spaces

Proposition

Let Z be any space. If Z is –Fréchet–Urysohn then Z does not have the
property (B).

Main Theorem 1

For any space X TFAE:

1 every sequence of pairwise disjoint finite subsets of X has a
subsequence with a point–finite open expansion

2 Cp(X ) is –Fréchet–Urysohn

3 Cp(X ) does not satisfy property (B)

Moreover if X is compact — or even more general: is Čech complete —
then all conditions above are equivalent to X being scattered.
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Compact–open case

Now we need *compact* versions of the properties useful in the Cp–case.

Essentially exchange *points* with *compact sets* in the previous definitions.

Let X be a space and K be nonempty collection of nonempty compact
subsets of X . We will say that a family K is:

moving o↵, if for any compact L ⇢ X there is K 2 K s.t. L\K = ;
compact–finite, if each compact subset L ⇢ X intersects only finitely
many elements of K

Theorem (Gruenhage–Ma)

If X is locally compact then TFAE:

1 Every moving o↵ family of nonempty compact subsets of X has a
countable infinite subfamily with a discrete open expansion

2 Ck(X ) is Baire
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Main result for Ck–spaces

Main Theorem 2

For any space X TFAE:

1 Every moving o↵ family of nonempty compact subsets of X has a
countable infinite subfamily with a compact–finite open expansion

2 Ck(X ) is –Fréchet–Urysohn

3 Ck(X ) does not satisfy property (B)
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Questions and Answers

Proposition

Let X be a space. If X is either scattered or countable, then X satisfies
the property ().

Question 1 (Tkachuk)

Suppose that all functionally bounded subsets of X are finite. Must X
have the property ()?
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Quick digression on the weakening of the density topology

Let A ⇢ R be Lebesgue measurable set and let x0 2 R.

The density of the
set A in point x0 is the number

lim
✏!0

�(A\ [x0 �✏, x0 +✏])

2✏

Define the topology ⌧ as follows:

for point x 2 R let Zx denote the family of all closed subsets of R
with density of x equal to 0

the basic open nbhd of a point x in ⌧ is of the form {x} [ (R \A) for
A 2 Zx

Proposition

The space (R, ⌧) is Tychono↵, it doesn’t satisfy property () and all
⌧–functionally bounded sets are finite.
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Questions and Answers

Proposition

If K is compact and non–scattered then Cp(K ) has (B).

Question 2 (Tkachuk)

Let X be a first countable pseudocompact non-scattered space. Must
Cp(X ) have the property (B)?

Yes. If Cp(X ) does not satisfy (B) then X has (). By another theorem of
Tkachuk a first countable pseudocompact space with property () has to
be scattered.
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