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All topological spaces are Tikhonov.

Definition
A space K is an Eberlein compact space if K is homeomorphic to a
weakly compact subset of a Banach space.

Equivalently, a compact space K is an Eberlein compactum if K can
be embedded in the following subspace of the product RΓ:

c0(Γ) = {x ∈ RΓ : for every ε > 0 the set {γ : |x(γ)| > ε} is finite},

for some set Γ.
All metrizable compacta are Eberlein compact spaces.
Continuous images, closed subspaces, countable products of Eberlein
compacta are Eberlein compact spaces.
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A compact space K is Corson compact if, for some set Γ, K is
homeomorphic to a subset of the Σ-product of real lines

Σ(RΓ) = {x ∈ RΓ : |{γ : x(γ) ̸= 0}| ≤ ω}.

Clearly, the class of Corson compact spaces contains all Eberlein
compacta.
Let κ be an infinite cardinal number. A compact space K is κ-Corson
compact if, for some set Γ, K is homeomorphic to a subset of the
Σκ-product of real lines

Σκ(RΓ) = {x ∈ RΓ : |{γ : x(γ) ̸= 0}| < κ}.

Obviously, the class of Corson compact spaces coincides with the
class of ω1-Corson compact spaces.
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Let {Xγ : γ ∈ Γ} be the family of nonempty topological spaces, and let
aγ be a fixed point of Xγ .

The σ-product of the family {(Xγ ,aγ) : γ ∈ Γ} is the following subspace
of the product

∏
γ∈Γ Xγ

σ(Xγ ,aγ , Γ) = {(xγ)γ∈Γ ∈
∏
γ∈Γ

Xγ : |{γ ∈ Γ : xγ ̸= aγ}| < ω} .

If Xγ = I = [0,1] and aγ = 0, for all γ ∈ Γ, then we denote the
σ-product σ(Xγ ,aγ , Γ) by σ(I, Γ).
If Xγ = Iω and aγ = (0,0, . . . ), for all γ ∈ Γ, then we denote the
σ-product σ(Xγ ,aγ , Γ) by σ(Iω, Γ).
For κ = ω, Σκ(RΓ) = σ(R, Γ).
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A compact space K is NY compact if K can be embedded into some
σ-product of metrizable compacta.

We denote the class of NY compact spaces by NY.
Every NY compact space is Eberlein compact.

Proposition

For a compact space K we have
(a) K is ω-Corson if and only if it can be embedded into some

σ-product of metrizable finitely dimensional compacta if and only if
it can be embedded into the σ-product σ(I, Γ) for some set Γ.

(b) K is NY compact if and only if it can be embedded into the
σ-product σ(Iω, Γ) for some set Γ.
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A space X is metacompact if every open cover of X has a point-finite
open refinement.

Theorem (Marciszewski, Plebanek, Z.)
For a compact space K , the following conditions are equivalent:

a K is ω-Corson;
b K is hereditarily metacompact and each nonempty subspace A of

K contains a nonempty relatively open separable, metrizable,
finitely dimensional subspace U.
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Theorem ( Marciszewski, Plebanek, Z.)

For a compact space K , the following conditions are equivalent:
(a) K belongs to the class NY;
(b) K is hereditarily metacompact and each nonempty subspace A of

K contains a nonempty relatively open subspace U of countable
weight.

Proposition (Nakhmanson and Yakovlev)
The class NY is stable under continuous images

For a space X , Cp(X ) denotes the space of real continuous functions
on X endowed with the pointwise convergence topology.

Theorem (Z.)
Let K and L be compact spaces. Assume there exists a continuous
linear transformation T : Cp(K ) −→ Cp(L) such that T (Cp(K )) is dense
in Cp(L). If K is NY compact, then L is NY compact as well.
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Definition
For a continuous linear operator T : X −→ Y between two linear
topological spaces, the dual operator T ∗ : X ∗ −→ Y ∗ is given by the
formula T (ϕ) = ϕ ◦ T .

Lemma
Let T : X −→ Y be a continuous linear operator between two locally
convex linear topological spaces, then
T (X ) is dense in Y ⇐⇒ T ∗ is an injection.

Lemma
Let K and L be compact spaces. Assume there exists a continuous
linear transformation T : Cp(K ) −→ Cp(L) such that T (Cp(K )) is dense
in Cp(L). If K is NY compact, then L is a union of countably many NY
compact spaces.
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Lemma
Let K be a compact space such that K =

⋃
n∈N Kn where {Kn : n ∈ N}

is a sequence of NY compact spaces. Then every subspace of K
contains a relatively open subspace of countable weight.

Proof.
Assume there exists A ⊆ K such that every relatively open U ⊆ A has
uncountable weight, then A has the same property. Indeed, assume
there is a nonempty, relatively open U ⊆ A of countable weight, then
U ∩ A ̸= ∅, and therefore U ∩ A ⊆ A is a relatively open, nonempty
subset of A with w(U ∩ A) ≤ ω, contradiction.
Without loss of generality, we can assume that A is closed and
therefore compact. Then it has the same property as K , so we can
assume that A = K . As K =

⋃
n∈N Kn, by the Baire category theorem,

there is Kn with nonempty interior. Since Kn is NY compact, there
exists a nonempty, open V ⊆ intK (Kn) with w(V ) ≤ ω. Then V is an
open subset of K of countable weight.
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Theorem
For a compact space K , the following conditions are equivalent:
a) K is Eberlein compact;
b) Cp(K ) has a σ-compact dense subspace.

Definition
A topological space is called σ-metacompact iff every open cover has
an open refinement which is a countable union of point finite families.

Theorem (Gruenhage)
For a compact space K , the following conditions are equivalent:
a) K is Eberlein compact;
b) K 2 is hereditarily σ-metacompact.
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Lemma
Let K and L be compact spaces. Assume there exists a continuous
linear transformation T : Cp(K ) −→ Cp(L) such that T (Cp(K )) is dense
in Cp(L). If K is NY compact, then L is hereditarily σ - metacompact.

Proof.
Space K is Eberlein compact, so there exists a dense σ-compact set
D ⊂ Cp(K ). Then T (D) is again a dense σ-compact subset of Cp(L).
Consequently, space L is Eberlein compact and therefore hereditarily
σ-metacompact.

Concluding, space L is hereditarily σ - metacompact and is a union of
countably many NY compact spaces.

Lemma
A σ-metacompact space which is a union of countably many closed,
metacompact subspaces is metacompact.
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Definition
A topological space is strongly countably dimensional iff it is a
countable union of finitely dimensional closed subspaces.

Theorem ( Marciszewski, Plebanek, Z.)
An NY compact space K is ω-Corson compact if and only if it is
strongly countably dimensional.
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Theorem (Z.)
Let X and Y be σ-compact spaces. Assume there exists a continuous
linear transformation T : Cp(X ) −→ Cp(Y ) such that T (Cp(X )) is dense
in Cp(Y ). If X is strongly countably dimensional, then Y is strongly
countably dimensional as well.

Theorem (Z.)
Let K and L be compact spaces. Assume there exists a continuous
linear transformation T : Cp(K ) −→ Cp(L) such that T (Cp(K )) is dense
in Cp(L). If K is ω - Corson compact, then L is ω - Corson compact as
well.
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Theorem (Z.)
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Theorem (Z.)
Let K and L be compact spaces. Assume there exists a continuous
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