Function spaces on Corson-like compacta

Krzysztof Zakrzewski

University of Warsaw

July 8, 2024

K. Zakrzewski (UW)

Function spaces on Corson-like compacta

July 8, 2024

イロト イポト イヨト イヨト

1/13

э

イロト イポト イヨト イヨト

æ

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space *K* is an Eberlein compactum if *K* can be embedded in the following subspace of the product \mathbb{R}^{Γ} :

 $c_0(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{ for every } \varepsilon > 0 \text{ the set } \{\gamma : |x(\gamma)| > \varepsilon\} \text{ is finite}\},\$

for some set Γ.

イヨト イモト イモト

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space *K* is an Eberlein compactum if *K* can be embedded in the following subspace of the product \mathbb{R}^{Γ} :

$$c_0(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{ for every } \varepsilon > 0 \text{ the set } \{\gamma : |x(\gamma)| > \varepsilon\} \text{ is finite}\},\$$

for some set Γ.

All metrizable compacta are Eberlein compact spaces.

4 **A** N A **B** N A **B** N

Definition

A space K is an Eberlein compact space if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently, a compact space *K* is an Eberlein compactum if *K* can be embedded in the following subspace of the product \mathbb{R}^{Γ} :

$$c_0(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{ for every } \varepsilon > 0 \text{ the set } \{\gamma : |x(\gamma)| > \varepsilon\} \text{ is finite}\},\$$

for some set Γ .

All metrizable compacta are Eberlein compact spaces.

Continuous images, closed subspaces, countable products of Eberlein compacta are Eberlein compact spaces.

$$\Sigma(\mathbb{R}^{\Gamma}) = \{ \boldsymbol{x} \in \mathbb{R}^{\Gamma} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| \leq \omega \}.$$

イロト イポト イヨト イヨト

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

Let κ be an infinite cardinal number. A compact space K is κ -Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ_{κ} -product of real lines

$$\boldsymbol{\Sigma}_{\kappa}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0} \}| < \kappa \}.$$

イロト イヨト イヨト イヨト

$$\boldsymbol{\Sigma}(\mathbb{R}^{\mathsf{\Gamma}}) = \{ \boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| \leq \omega \}.$$

Clearly, the class of Corson compact spaces contains all Eberlein compacta.

Let κ be an infinite cardinal number. A compact space K is κ -Corson compact if, for some set Γ , K is homeomorphic to a subset of the Σ_{κ} -product of real lines

$$\boldsymbol{\Sigma}_{\kappa}(\mathbb{R}^{\mathsf{\Gamma}}) = \{\boldsymbol{x} \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma : \boldsymbol{x}(\gamma) \neq \boldsymbol{0}\}| < \kappa\}.$$

Obviously, the class of Corson compact spaces coincides with the class of ω_1 -Corson compact spaces.

< 日 > < 同 > < 回 > < 回 > < □ > <

э

(日)

э

The σ -product of the family $\{(X_{\gamma}, a_{\gamma}) : \gamma \in \Gamma\}$ is the following subspace of the product $\prod_{\gamma \in \Gamma} X_{\gamma}$

$$\sigma(X_{\gamma}, \boldsymbol{a}_{\gamma}, \boldsymbol{\Gamma}) = \{(\boldsymbol{x}_{\gamma})_{\gamma \in \boldsymbol{\Gamma}} \in \prod_{\gamma \in \boldsymbol{\Gamma}} X_{\gamma} : |\{\gamma \in \boldsymbol{\Gamma} : \boldsymbol{x}_{\gamma} \neq \boldsymbol{a}_{\gamma}\}| < \omega\}.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

The σ -product of the family $\{(X_{\gamma}, a_{\gamma}) : \gamma \in \Gamma\}$ is the following subspace of the product $\prod_{\gamma \in \Gamma} X_{\gamma}$

$$\sigma(X_{\gamma}, \boldsymbol{a}_{\gamma}, \boldsymbol{\Gamma}) = \{(\boldsymbol{x}_{\gamma})_{\gamma \in \boldsymbol{\Gamma}} \in \prod_{\gamma \in \boldsymbol{\Gamma}} X_{\gamma} : |\{\gamma \in \boldsymbol{\Gamma} : \boldsymbol{x}_{\gamma} \neq \boldsymbol{a}_{\gamma}\}| < \omega\}.$$

If $X_{\gamma} = I = [0, 1]$ and $a_{\gamma} = 0$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(I, \Gamma)$.

A D N A B N A B N A B N

The σ -product of the family $\{(X_{\gamma}, a_{\gamma}) : \gamma \in \Gamma\}$ is the following subspace of the product $\prod_{\gamma \in \Gamma} X_{\gamma}$

$$\sigma(X_{\gamma}, \boldsymbol{a}_{\gamma}, \boldsymbol{\Gamma}) = \{(\boldsymbol{x}_{\gamma})_{\gamma \in \boldsymbol{\Gamma}} \in \prod_{\gamma \in \boldsymbol{\Gamma}} X_{\gamma} : |\{\gamma \in \boldsymbol{\Gamma} : \boldsymbol{x}_{\gamma} \neq \boldsymbol{a}_{\gamma}\}| < \omega\}.$$

If $X_{\gamma} = I = [0, 1]$ and $a_{\gamma} = 0$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(I, \Gamma)$.

If $X_{\gamma} = I^{\omega}$ and $a_{\gamma} = (0, 0, ...)$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(I^{\omega}, \Gamma)$.

3

A D N A B N A B N A B N

The σ -product of the family $\{(X_{\gamma}, a_{\gamma}) : \gamma \in \Gamma\}$ is the following subspace of the product $\prod_{\gamma \in \Gamma} X_{\gamma}$

$$\sigma(X_{\gamma}, \boldsymbol{a}_{\gamma}, \boldsymbol{\Gamma}) = \{(\boldsymbol{x}_{\gamma})_{\gamma \in \boldsymbol{\Gamma}} \in \prod_{\gamma \in \boldsymbol{\Gamma}} X_{\gamma} : |\{\gamma \in \boldsymbol{\Gamma} : \boldsymbol{x}_{\gamma} \neq \boldsymbol{a}_{\gamma}\}| < \omega\}.$$

If $X_{\gamma} = I = [0, 1]$ and $a_{\gamma} = 0$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(I, \Gamma)$.

If $X_{\gamma} = I^{\omega}$ and $a_{\gamma} = (0, 0, ...)$, for all $\gamma \in \Gamma$, then we denote the σ -product $\sigma(X_{\gamma}, a_{\gamma}, \Gamma)$ by $\sigma(I^{\omega}, \Gamma)$. For $\kappa = \omega, \Sigma_{\kappa}(\mathbb{R}^{\Gamma}) = \sigma(\mathbb{R}, \Gamma)$.

A D N A B N A B N A B N

A compact space *K* is NY compact if *K* can be embedded into some σ -product of metrizable compacta.

A compact space *K* is NY compact if *K* can be embedded into some σ -product of metrizable compacta.

We denote the class of NY compact spaces by \mathcal{NY} .

A compact space K is NY compact if K can be embedded into some σ -product of metrizable compacta.

We denote the class of NY compact spaces by \mathcal{NY} .

Every NY compact space is Eberlein compact.

A compact space K is NY compact if K can be embedded into some σ -product of metrizable compacta. We denote the class of NY compact spaces by NY. Every NY compact space is Eberlein compact.

Proposition

For a compact space K we have

- K is ω-Corson if and only if it can be embedded into some σ-product of metrizable finitely dimensional compacta if and only if it can be embedded into the σ-product σ(I, Γ) for some set Γ.
- **(b)** *K* is NY compact if and only if it can be embedded into the σ -product $\sigma(I^{\omega}, \Gamma)$ for some set Γ .

A space X is metacompact if every open cover of X has a point-finite open refinement.

э

A space X is metacompact if every open cover of X has a point-finite open refinement.

Theorem (Marciszewski, Plebanek, Z.)

For a compact space K, the following conditions are equivalent:

- K is ω-Corson;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open separable, metrizable, finitely dimensional subspace U.

For a compact space K, the following conditions are equivalent:

- If M belongs to the class \mathcal{NY} ;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open subspace U of countable weight.

For a compact space K, the following conditions are equivalent:

- If M belongs to the class \mathcal{NY} ;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open subspace U of countable weight.

Proposition (Nakhmanson and Yakovlev)

The class $\mathcal{N}\mathcal{Y}$ is stable under continuous images

For a compact space K, the following conditions are equivalent:

- If M belongs to the class \mathcal{NY} ;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open subspace U of countable weight.

Proposition (Nakhmanson and Yakovlev)

The class $\mathcal{N}\mathcal{Y}$ is stable under continuous images

For a space X, $C_p(X)$ denotes the space of real continuous functions on X endowed with the pointwise convergence topology.

(日)

For a compact space K, the following conditions are equivalent:

- If M belongs to the class \mathcal{NY} ;
- K is hereditarily metacompact and each nonempty subspace A of K contains a nonempty relatively open subspace U of countable weight.

Proposition (Nakhmanson and Yakovlev)

The class $\mathcal{N}\mathcal{Y}$ is stable under continuous images

For a space X, $C_p(X)$ denotes the space of real continuous functions on X endowed with the pointwise convergence topology.

Theorem (Z.)

Let *K* and *L* be compact spaces. Assume there exists a continuous linear transformation $T : C_p(K) \to C_p(L)$ such that $T(C_p(K))$ is dense in $C_p(L)$. If *K* is NY compact, then *L* is NY compact as well.

For a continuous linear operator $T : X \to Y$ between two linear topological spaces, the dual operator $T^* : X^* \to Y^*$ is given by the formula $T(\phi) = \phi \circ T$.

(a) < (a) < (b) < (b)

э

For a continuous linear operator $T : X \to Y$ between two linear topological spaces, the dual operator $T^* : X^* \to Y^*$ is given by the formula $T(\phi) = \phi \circ T$.

Lemma

Let $T : X \to Y$ be a continuous linear operator between two locally convex linear topological spaces, then T(X) is dense in $Y \iff T^*$ is an injection.

For a continuous linear operator $T : X \to Y$ between two linear topological spaces, the dual operator $T^* : X^* \to Y^*$ is given by the formula $T(\phi) = \phi \circ T$.

Lemma

Let $T : X \to Y$ be a continuous linear operator between two locally convex linear topological spaces, then T(X) is dense in $Y \iff T^*$ is an injection.

Lemma

Let K and L be compact spaces. Assume there exists a continuous linear transformation $T : C_p(K) \to C_p(L)$ such that $T(C_p(K))$ is dense in $C_p(L)$. If K is NY compact, then L is a union of countably many NY compact spaces.

< 日 > < 同 > < 回 > < 回 > < □ > <

Let *K* be a compact space such that $K = \bigcup_{n \in \mathbb{N}} K_n$ where $\{K_n : n \in \mathbb{N}\}$ is a sequence of NY compact spaces. Then every subspace of *K* contains a relatively open subspace of countable weight.

Let *K* be a compact space such that $K = \bigcup_{n \in \mathbb{N}} K_n$ where $\{K_n : n \in \mathbb{N}\}$ is a sequence of NY compact spaces. Then every subspace of *K* contains a relatively open subspace of countable weight.

Proof.

Assume there exists $A \subseteq K$ such that every relatively open $U \subseteq A$ has uncountable weight, then \overline{A} has the same property. Indeed, assume there is a nonempty, relatively open $U \subseteq \overline{A}$ of countable weight, then $U \cap A \neq \emptyset$, and therefore $U \cap A \subseteq A$ is a relatively open, nonempty subset of A with $w(U \cap A) \leq \omega$, contradiction. Without loss of generality, we can assume that A is closed and therefore compact. Then it has the same property as K, so we can assume that A = K. As $K = \bigcup_{n \in \mathbb{N}} K_n$, by the Baire category theorem,

there is K_n with nonempty interior. Since K_n is NY compact, there exists a nonempty, open $V \subseteq int_K(K_n)$ with $w(V) \leq \omega$. Then V is an open subset of K of countable weight.

Theorem

For a compact space K, the following conditions are equivalent:
a) K is Eberlein compact;
b) C_p(K) has a σ-compact dense subspace.

イロト イポト イヨト イヨト

Theorem

For a compact space K, the following conditions are equivalent:
a) K is Eberlein compact;
b) C_p(K) has a σ-compact dense subspace.

Definition

A topological space is called σ -metacompact iff every open cover has an open refinement which is a countable union of point finite families.

Theorem

For a compact space K, the following conditions are equivalent:
a) K is Eberlein compact;
b) C_p(K) has a σ-compact dense subspace.

Definition

A topological space is called σ -metacompact iff every open cover has an open refinement which is a countable union of point finite families.

Theorem (Gruenhage)

For a compact space K, the following conditions are equivalent:
a) K is Eberlein compact;
b) K² is hereditarily *σ*-metacompact.

(日)

Let *K* and *L* be compact spaces. Assume there exists a continuous linear transformation $T : C_p(K) \to C_p(L)$ such that $T(C_p(K))$ is dense in $C_p(L)$. If *K* is NY compact, then *L* is hereditarily σ - metacompact.

(日)

Let *K* and *L* be compact spaces. Assume there exists a continuous linear transformation $T : C_p(K) \to C_p(L)$ such that $T(C_p(K))$ is dense in $C_p(L)$. If *K* is NY compact, then *L* is hereditarily σ - metacompact.

Proof.

Space *K* is Eberlein compact, so there exists a dense σ -compact set $D \subset C_p(K)$. Then T(D) is again a dense σ -compact subset of $C_p(L)$. Consequently, space *L* is Eberlein compact and therefore hereditarily σ -metacompact.

Let *K* and *L* be compact spaces. Assume there exists a continuous linear transformation $T : C_p(K) \to C_p(L)$ such that $T(C_p(K))$ is dense in $C_p(L)$. If *K* is NY compact, then *L* is hereditarily σ - metacompact.

Proof.

Space *K* is Eberlein compact, so there exists a dense σ -compact set $D \subset C_p(K)$. Then T(D) is again a dense σ -compact subset of $C_p(L)$. Consequently, space *L* is Eberlein compact and therefore hereditarily σ -metacompact.

Concluding, space *L* is hereditarily σ - metacompact and is a union of countably many *NY* compact spaces.

< 日 > < 同 > < 回 > < 回 > < □ > <

Let *K* and *L* be compact spaces. Assume there exists a continuous linear transformation $T : C_p(K) \to C_p(L)$ such that $T(C_p(K))$ is dense in $C_p(L)$. If *K* is NY compact, then *L* is hereditarily σ - metacompact.

Proof.

Space *K* is Eberlein compact, so there exists a dense σ -compact set $D \subset C_p(K)$. Then T(D) is again a dense σ -compact subset of $C_p(L)$. Consequently, space *L* is Eberlein compact and therefore hereditarily σ -metacompact.

Concluding, space *L* is hereditarily σ - metacompact and is a union of countably many *NY* compact spaces.

Lemma

A σ -metacompact space which is a union of countably many closed, metacompact subspaces is metacompact.

イロト イポト イヨト イヨト

э

A topological space is strongly countably dimensional iff it is a countable union of finitely dimensional closed subspaces.

イロト イポト イヨト イヨト

A topological space is strongly countably dimensional iff it is a countable union of finitely dimensional closed subspaces.

Theorem (Marciszewski, Plebanek, Z.)

An NY compact space K is ω -Corson compact if and only if it is strongly countably dimensional.

Theorem (Z.)

Let X and Y be σ -compact spaces. Assume there exists a continuous linear transformation $T : C_p(X) \to C_p(Y)$ such that $T(C_p(X))$ is dense in $C_p(Y)$. If X is strongly countably dimensional, then Y is strongly countably dimensional as well.

Theorem (Z.)

Let X and Y be σ -compact spaces. Assume there exists a continuous linear transformation $T : C_p(X) \to C_p(Y)$ such that $T(C_p(X))$ is dense in $C_p(Y)$. If X is strongly countably dimensional, then Y is strongly countably dimensional as well.

Theorem (Z.)

Let K and L be compact spaces. Assume there exists a continuous linear transformation $T : C_p(K) \to C_p(L)$ such that $T(C_p(K))$ is dense in $C_p(L)$. If K is ω - Corson compact, then L is ω - Corson compact as well.