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A bit of motivation

Graphs are all about connections. Some of the classical results are of the

form: there are two sets connected to each other. How many “things” we

need to remove to separate them? A first answer is the number of

“disjoint” paths that connect them.
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Separation
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Vertex-Menger

Theorem (Menger)
Given A,B ⊂ V (G ), the smallest size of a set F ⊂ V (G ) such that A, B

are not connected in G \ F is the largest number of disjoint paths

connecting A and B.
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Vertex-Menger
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Vertex-Menger
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Edge-Menger

Theorem (Menger)
Given A,B ⊂ V (G ), the smallest size of a set F ⊂ E (G ) such that A, B

are not connected in G \ F is the largest number of edge-disjoint paths

connecting A and B.
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Edge-Menger
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Edge-Menger
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Infinite graphs

For infinite graphs, an important concept is a ray, which is an infinite

sequence of distinct vertices, each joined to the next one by an edge.
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A ray
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Directions

Rays are useful to describe infinite graphs. They somehow indicate

directions on the graph.
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Ends

But if two or more rays are infinitely connect, it is convenient to say that

they “point to the same direction”. So we say that two rays are

equivalent if, after removing finitely many vertices, they are still

connected.

An end is each equivalence class of this relation.
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One end
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Two ends
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One end
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Separation with ends

In a similar way for what is done in the finite case, it can be done with

ends:

Theorem (Polat)
Let A,B ⊂ Ω(G ) be sets of ends such that A ∩ B = A ∩ B = ∅. Then
the maximum size of a family of paths connecting A and B is equal to

the size of the smallest set that can separate them.

Notice that there is a “topological hypothesis” here.
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Topology

Let us see what is a basic open neighborhood for an end ε. Choose r a

representative of ε. Remove finitely many vertices from G . Let C be the

connected component where a tail of r is. A basic open neighborhood of

ε is the collection of all ends that have rays in the component C .

Note that the particular r taken is not important. The neighborhood is

determined by the finite set that is removed.
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A basic open neighborhood
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A basic open neighborhood
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The end space

Equipped with this topology, Ω(G ) is called the end space associated to

G (it is important to notice that G is not a subset of Ω(G ) - sometimes

another space is considered, whose points are G ∪ Ω(G ), but we are not

working with them today).
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How are they?

Since the class of spaces of the form Ω(G ) is a very specific class of

topological spaces, it is worth to know what are the topological

properties that they have. Here are some:

• Regular;

• Ultraparacompact;

• Metrizable iff G has a normal end-faithful tree.
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Who are they?

Diestel ([2]) asked the question of what are the topological spaces that

can be seen as an end space of a graph.

The break through was made by Kurkofka and Pitz in [3]. They showed

that every end space can be seen as the the set of some special rays in

some well behaved trees.

After, Pitz used this representation to answer Diestel’s question in [4].
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A characterization

Theorem (Pitz)
A topological space is the end space of a graph if, and only if, there is a

subbase C made of clopen sets such that:

• C is σ-disjoint, i.e., it is the union of countably many antichains;

• C is nested, i.e., given A,B ∈ C, A ⊂ B, B ⊂ A or A ∩ B = ∅;
• C is noetherian, i.e., every ⊂-increasing family of elements of C has

a maximum;

• C is hereditarily complete.

A family is complete if every centered subfamily has non-empty

intersection. A family C is hereditarily complete if, for every closed set F ,

{C ∩ F : C ∈ C} is complete.
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A topological game

The condition of C being hereditarily complete can be changed to a game

condition.

Let X be a zero-dimensional space. Let C be a base made by clopen sets.

We denote by EndC the following game played between Player I and

Player II:

• Player I chooses U0 ∈ C. Then Player II select U0 ⊂ C a covering for

U0.

• At the (n + 1)-th inning, Player I chooses Un+1 ∈ C such that

Un+1 ⊂ Vn for some Vn ∈ Un. Then Player II chooses Un+1 ⊂ C a

covering for Un+1.

Player II is declared the winner if there are x ∈ X and an open set

A ⊂ X \ {x} such that
⋂

n∈ω Un = A ∪ {x}. Player I is declared the

winner otherwise.
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A play of the game
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The winning condition
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The change in the description

Proposition (Aurichi, Magalhães Júnior, Real)
A topological spaces is the end space of a graph if, and only if, there is a

subbase C made of clopen sets such that:

• C is σ-disjoint, i.e., it is the union of countably many antichains;

• C is nested, i.e., given A,B ∈ C, A ⊂ B, B ⊂ A or A ∩ B = ∅;
• C is noetherian, i.e., every ⊂-increasing family of elements of C has

a maximum;

• Player II has a winning strategy in the EndC game.
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What do we get from it?

One advantage of using the game in this characterization is that from the

winning strategy it is simple to get a “nice” tree as in the representation

result of Kurkofka and Pitz.
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A step back

As we saw at the beginning, for the finite case there is a difference if we

look at connections in terms of vertices or edges. In the sense that two

sets can be separated by just one vertex, but they would need the

removal of several edges, per example.

For the infinite case, this could mean different things. But, in many

cases, graphs are assumed to be locally finite. In this particular setting, if

two sets can be separated by finitely many vertices, they can be

separated by finitely many edges as well.

If we drop the locally finite assumption, everything changes.
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An example
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The edge-ends

So we can change the definition of the equivalence between rays and,

afterwards, the definition of the topology on the edge-end spaces.

Basically, every time you have a finite set of vertices, you change to a

finite set of edges.

It should be pointed out that, for the locally finite case, these two

definitions are equivalent.
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Who are these topological spaces?

Then again we have the question about what are the topological spaces

obtained in this form.
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Every edge-end space is an end space

Proposition (Aurichi, Magalhães Júnior, Real)
Given a graph G, there is another graph G ′ such that ΩE (G ) is

homeomorphic to Ω(G ′).

This inclusion is proper (we will see this in a bit).
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Representation

Actually, it can be done better:

Proposition (Aurichi, Magalhães Júnior, Real)
In the point of view of topological spaces,

{ΩE (G ) : G is a graph} = {Ω(G ) : G is a graph such that

any vertex edge-dominates at most one end}.
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A helpful result

Proposition (Aurichi, Magalhães Júnior, Real)
Let X be an edge-end space of some graph. If X is Lindelöf and first

countable space, then X is metrizable.

This allows us to show that not every end space is an edge-end space.
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A final example

Proposition
The Alexandroff duplicate of the Cantor set is an end space of a graph,

but it is not an edge-end of any graph.

Proof.
It is a compact (therefore Lindelöf), first countable space. But it is not

metrizable.
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Thank you for your attention!
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