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Congruences of binomial lattices as (directed) homotopies

≡

Similar to directed homotopies (Grandis 2009) as used in the modelling of
concurrent computation (Fajstrup et al. 2016).

Problem: What about congruences of Q∨(I)?
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:

The ordering on Q∨(I)

Say that π1 ≤ π2 if π2 is always on the left and above π1:

This is the point-wise ordering if π1, π2 are thought as sup-preserving maps.

Indeed Q∨(I) = Sup(I, I), with I = [0, 1].
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:

Algebraic (and categorical) structures of Q∨(I)

Proposition. Q∨(I) is:

I a quantale (where ⊗ is composition),

I a Girard quantale (where (−)∗ is reflection along diagonal),

I a completely distributive lattice.

A completely distributive lattice is a complete lattice for which∧
i

∨
j

xi,j =
∨

f :I→J

∧
i

xi,f (i) .

Every completely distributive lattice is a complete Heyting algebra, that is, a
frame.
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:

Continuous domains (and the way-below relation)

Let P be a domain (or a cpo). That is, P has suprema of directed subsets.

For x , y ∈ P, we say that y is way-below x , written y � x , if

x ≤
∨

D ( with D directed ) implies y ≤ d , for some d ∈ D.

In particular x ∈ P is compact iff x � x .

Definition. P is a continuous domain if it is a domain and, for each x ∈ P,

I

�

x := { y ∈ P | y � x } is directed,

I x =
∨ �

x .
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:

Examples

I If L is a completely distributive lattice, the J (L) (the set of join-prime
elements of L) is a continuous domain.

I We have

J (Q∨(I) ) ' [0, 1)op × (0, 1] ,

(x , y)� (x ′, y ′) iff x ′ < x and y < y ′ .

••
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:

Completely distributive lattice as continuous domains

Proposition. See e.g. (Gierz et al. 2003) A complete lattice L is completely
distributive if and only if

I it is distributive, and

I both L and Lop are continuous domains.

Lemma. A completely distributive lattice is a spatial and cospatial frame.

Spatial : it is generated under infima by its meet-prime elements.

Cospatial : it is generated under suprema by its join-prime elements.
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:

Hoffmann-Lawson duality

I For each completely distributive lattice L, J (L) is a continuous domain.

I For each continuous domain, the set D(P)—of downsets closed under
suprema of directed joins, the Scott closed—is a completely distributive
lattice.

I If L1, L2 are completely distributive lattices and f : L1 −−−→ L2 preserves
arbitrary infima and finite suprema, then (the restriction of) its left adjoint
J (L2) −−−→ J (L1) is Scott-continuous.

I If P1,P2 are continuous domains and f : P1 −−−→ P2 is Scott-continuous,
then f −1 : D(P2) −−−→ D(P1) preserves arbitrary infima and finite
suprema.

Theorem (Lawson 1979; Hoffmann 1981). These correspondences make up a
dual equivalence of categories.

See e.g. (Gehrke and van Gool 2024).
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:

Recap: (co)frame quotients of completely distributive lattices

I A point of a completely distributive lattice L is (for us) a join-prime
element of L.

I Given a set S ⊆ J (L), we can define

x ≡S y if j ≤ x ⇐⇒ j ≤ y , for each j ∈ S .

This is a (co)frame congruence.

I By frame duality, a quotient of a completely distributive lattice L to a
(co)spatial (co)frame yields a subset S ⊆ J(L) that is closed under
directed suprema.

I In many cases—for Q∨(I), in particular—this is a bijection between frame
congruences and subsets closed under directed suprema.
But not always.
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:

Exterior points in continuous domains

Let P be a continuous domain and S ⊆ P.

Definition. A point s ∈ S is exterior in S if, for some x ∈ P,

(i) x � s,

(ii) { y ∈ P | x ≤ y � s } ∩ S = ∅.

Remark. P is endowed with the topology where

closed = closed under directed suprema.

This is not the Scott-topology, it is a variant.

By the previous slide, we shall most often assume that S ⊆ P is closed.
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:

Examples

S

•

•

Every exterior point of S belongs to the frontier of S , but not conversely.
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:

Quasi-regular closed subsets and complete congruences

Theorem. (Calk and Santocanale 2024) For S ⊆ P closed, TFAE:

I S is has no exterior points.

I { x ∈ S | x � s } is cofinal in { y | y � s }, for each s ∈ S .

I S is a continuous domain,
and the inclusion ι : S P preserves the � relation.

I The map
ι−1 : D(P) −−−→ D(S), X 7→ X ∩ S

(is surjective and) preserves arbitrary (infima and) suprema.

That is, it is a complete map (and consequently D(S) is a completely
distributive lattice).

I The congruence ≡S is complete.

17/26



:

Examples

• • •

From the left to the right:

(i) S is not a continuous domain: ⇓ p = ∅,
(ii) S is not a continuous domain:

∨
⇓ p < p,

(iii) the inclusion of S into P does not preserve �.
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:

Complete maps: a refinement of Hoffmann-Lawson duality

A map f : L1 −−−→ L2 is complete if it preserves arbitrary infima and arbitrary
suprema.

Theorem. (Calk and Santocanale 2024) Let f : P1 −−−→ P2 be a
Scott-continuous map between continuous domains. TFAE:

1. f −1 : D(P2) −−−→ D(P1) is complete (i.e. preserves arbitrary suprema).

2. f preserves the way-below relation.

NB: the above statement can be recovered from the literature (Hofmann and
Stralka 1976), modulo some key remarks.
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:

Back to Q∨(I): congruences and directed homotopies

Theorem. (Calk and Santocanale 2024) Let

I S be a closed subset of [0, 1)op × (0, 1],

I f , g ∈ Q∨(I) with f ≤ g .

We have f ≡S g if and only if there exists parametrisations πf , πg of f , g and a
directed homotopy ψ : πf → πg such that Im(ψ) \ Im(πf ) ⊆ Sc.

S

Sc

•
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Plan

From discrete to continuous paths

Completely distributive lattices as continuous domains

Complete congruences of completely distributive lattices

The frame of quasi-regular open subsets
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Complete congruences make up a (dual) frame

For P a continuous domain, say that S ⊆ P is q-reg if it has no experior points.

Remarks:

I the union of q-reg subsets is q-reg.

I q-reg susbets are not closed under finite intersections.

For X ⊆ P, let

X o :=
⋃
{Y ⊆ X | Y is q-reg } .

Proposition.

1. The correspondence X 7→ X o sends closed sets to closed sets.

2. For X ,Y ⊆ P closed, the following holds:

(X ∪ Y )o ⊆ X ∪ (Y )o .
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:

Complete congruences make up a (dual) frame

Let X ⊆ P be open if it is the complement of a closed (under surpema of
directed sets) subset.

For X open, define

X := ((X c)o)c .

Corollary. The mapping X 7→ X is a nucleus on the frame of open subsets of
P.

Say that X ⊆ P is a quasi-regular open if it is the complement of a closed
subset which is q-reg.

Corollary. (Calk and Santocanale 2024) The poset of quasi-regular open
subsets of P is a frame.

The poset of complete congruences of a completely distributive lattice is a dual
frame.
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Complete congruences of I do not form a BA,
nor a completely distributive lattice

Let in the following P = (0, 1].

I X ⊆ (0, 1] is open iff it is open in the topology generated by left-open
right-closed open intervals—i.e. of the form (x , y ].

I for X open, X is obtained by closing X under suprema.

Recall that X is regular open if it is the closure of its interior.

Proposition.

I Every regular open is quasi-regular open.

I ∅ is quasi-regular open.

I There is a quasi-regular open (the complement of a variant of the Cantor
set) which is not regular open.

Corollary. (Calk and Santocanale 2024) The frame of quasi-regular open
subsets of (0, 1] is not a Boolean algebra.

It is not either a completely distributive lattice, as it has no points.

24/26



:

Complete congruences of I do not form a BA,
nor a completely distributive lattice

Let in the following P = (0, 1].

I X ⊆ (0, 1] is open iff it is open in the topology generated by left-open
right-closed open intervals—i.e. of the form (x , y ].

I for X open, X is obtained by closing X under suprema.

Recall that X is regular open if it is the closure of its interior.

Proposition.

I Every regular open is quasi-regular open.

I ∅ is quasi-regular open.

I There is a quasi-regular open (the complement of a variant of the Cantor
set) which is not regular open.

Corollary. (Calk and Santocanale 2024) The frame of quasi-regular open
subsets of (0, 1] is not a Boolean algebra.

It is not either a completely distributive lattice, as it has no points.

24/26



:

Complete congruences of I do not form a BA,
nor a completely distributive lattice

Let in the following P = (0, 1].

I X ⊆ (0, 1] is open iff it is open in the topology generated by left-open
right-closed open intervals—i.e. of the form (x , y ].

I for X open, X is obtained by closing X under suprema.

Recall that X is regular open if it is the closure of its interior.

Proposition.

I Every regular open is quasi-regular open.

I ∅ is quasi-regular open.

I There is a quasi-regular open (the complement of a variant of the Cantor
set) which is not regular open.

Corollary. (Calk and Santocanale 2024) The frame of quasi-regular open
subsets of (0, 1] is not a Boolean algebra.

It is not either a completely distributive lattice, as it has no points.

24/26



:

Complete congruences of I do not form a BA,
nor a completely distributive lattice

Let in the following P = (0, 1].

I X ⊆ (0, 1] is open iff it is open in the topology generated by left-open
right-closed open intervals—i.e. of the form (x , y ].

I for X open, X is obtained by closing X under suprema.

Recall that X is regular open if it is the closure of its interior.

Proposition.

I Every regular open is quasi-regular open.

I ∅ is quasi-regular open.

I There is a quasi-regular open (the complement of a variant of the Cantor
set) which is not regular open.

Corollary. (Calk and Santocanale 2024) The frame of quasi-regular open
subsets of (0, 1] is not a Boolean algebra.

It is not either a completely distributive lattice, as it has no points.

24/26



:

Thanks for your attention
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