Resolvable and irresolvable spaces

Lajos Soukup

HUN-REN Alfréd Rényi Institute of Mathematics https://www.renyi.hu/en/researchers/lajos-soukup

38th Summer Conference on Topology and its Applications

- Hewitt, Ph.D Thesis, Harvard, 1942
- Def. A space X is resolvable iff X contains two disjoint dense subsets.
- Def. A space is irresolvable iff it is not resolvable.
- What makes a space (ir)resolvable?
- Fact. If X has an isolated point, then X is irresolvable
- Revised question: What makes a crowded space (ir)resolvable?

• Are there irresolvable crowded spaces?

- the structure of refinements of a topology
- Assume that $\langle X, \tau \rangle$ is a crowded 0-dimensional space
- Let $\tau' \supset \tau$ be a **maximal 0-dimensional crowded** topology on *X*.
- Claim: $\langle X, \tau' \rangle$ is irresolvable.
- Proof. Assume on the contrary that X has a partition {D₀, D₁} into dense sets
- You can refine the topology τ' by declaring that D_0 and D_1 are open!
- $\tau^* = \langle \tau' \cup \{D_0, D_1\} \rangle_{gen}$ is 0-dimensional crowded
- Contradiction: τ' was not maximal.

• Fact: If X is a space, then the closed subspace

 $Res(X) = \bigcup \{ Y \subset X : Y \text{ is resolvable} \}$

is resolvable.

- Fact. If X is irresolvable, then X \ Res(X) is a non-empty open, hereditarily irresolvable subspace.
- **Def.** A space is hereditarily irresolvable (HI) iff every crowded subspace is irresolvable
- Fact. If X is a space and every non-empty open subset of X contains a resolvable subspace, then X is resolvable.
- Fact. Assume that K is a family of regular spaces which is closed for regular-closed subsets. If every X ∈ K contains a resolvable subspace, then every X ∈ K is resolvable.

- Def. A topological space is κ-resolvable iff X contains κ disjoint dense subsets.
- Fact: If X is a space and κ is a cardinal, then the closed subspace

$$Res_{\kappa}(X) = \bigcup \{Y \subset X : Y \text{ is } \kappa \text{-resolvable} \}$$

is κ -resolvable.

- If *D* is **dense** and *U* is a non-empty **open** set, then $U \cap D \neq \emptyset$.
- if X is κ -resolvable then $\kappa \leq \min\{|U| : U \in \tau_X^+\} = \Delta(X)$.
- **Def.** $\Delta(X)$ is the dispersion character of X.
- **Def.** A space X is maximally resolvable iff it is $\Delta(X)$ -resolvable.

A space X is **maximally resolvable** iff it is $\Delta(X)$ -resolvable.

Thm. A topological space X is maximally resolvable provided it is

- metric, or
- ordered, or
- compact.

What about

- monotonically normal spaces?
- Lindelöf spaces?
- countably compact spaces?
- pseudocompact spaces?

The expectation is that *nice* spaces should be maximally resolvable.

Soukup, L (Rényi Institute)

- **Def.** A topological space X is **neat** iff $|X| = \Delta(X)$.
- Every regular space contains a regular-closed neat subspace.
- Assume that K is a class of regular spaces which is closed for regular-closed subspaces.
 - If every neat $X \in \mathbb{K}$ is κ -resolvable, then every $X \in \mathbb{K}$ is κ -resolvable.
 - If every neat $X \in \mathbb{K}$ is maximally resolvable, then every $X \in \mathbb{K}$ is maximally resolvable.
- The class of compact (or countably compact, Lindelöf, monotonically normal, pseudocompact) spaces is closed for regular-closed subspaces.
- it is enough to investigate the resolvability of neat spaces.

How to prove resolvability? Small *π*-weight

X is **neat** iff $|X| = \Delta(X)$.

- Fact. If X is neat and $\pi(X) \le |X|$, then X is maximally resolvable.
- **Proof**: Write $\kappa = \pi(X) \le |X| = \Delta(X) = \lambda$
- Let $\{B_{\eta} : \eta < \kappa\}$ be a π -base
- By transfinite recursion choose distinct points {d_{ξ,η} : η < κ, ξ < λ} such that d_{ξ,η} ∈ B_η.
- Put $D_{\xi} = \{ d_{\xi,\eta} : \eta < \kappa \}$ for $\xi < \lambda$.
- {D_ξ : ξ < λ} is a family of pairwise disjoint dense sets. QED
- Fact. Neat, compact crowded spaces are maximally resolvable.
- Thm. Compact spaces are maximally resolvable.

How to prove resolvability? Small tightness

• Fact. If X is neat and t(X) < |X|, then X is maximally resolvable.

• **Proof**. Write
$$\kappa = |X| = \Delta(X)$$
.

- If $A \in [X]^{<\kappa}$, then there is $B \subset X \setminus A$ with $A \subset \overline{B}$ and $|B| \le |A| \cdot t(X)$.
- Write $X = \{x_{\alpha} : \alpha < \kappa\}.$
- By transfinite recursion on *α*, construct disjoint sets {*D*^α_ξ : ξ < α < κ} such that {*x_i* : *i* < α} ⊂ *D*^α_ξ and |*D*^α_ξ| ≤ |α| · *t*(*X*).
- Let $D_{\xi} = \bigcup \{ D_{\xi}^{\alpha} : \xi < \alpha < \kappa \}.$
- $\{D_{\xi} : \xi < \kappa\}$ is a family of pairwise disjoint dense sets.
- Corollary: (Neat) metric spaces with Δ(X) > ω are maximally resolvable.
- Thm. Metric spaces are maximally resolvable.

- Fact. Every crowded, countably compact, regular space is resolvable.
- **Proof:** Let X be a crowded, countably regular compact space.
- Def. A subset D ⊂ X is strongly discrete (SD) if there is a neighborhood assignment U : D → τ_X such that the sets {U(d) : d ∈ D} are pairwise disjoint.
- **Def.** A point $x \in X$ is an **SD-point** iff there is an SD set $D \subset X$ such that $x \in D'$.
- Let $A = \{x \in X : x \text{ is an SD-point}\}.$
- A is dense in X.
- If $B = X \setminus A$ is dense, then we are done.
- Assume that *B* is not dense. So *A* contains a non-empty open set $U \in \tau_X^+$.
- Construct *T* = {*x_s* : *s* ∈ ω^{<ω}} ⊂ *U* by induction on |*s*| such that for each *s* ∈ ω^{<ω}

•
$$\{x_{s \frown n} : n < \omega\}$$
 is SD, and $x_s \in \{x_{s \frown n} : n < \omega\}'$.

Soukup, L (Rényi Institute)

• **Def.** Given a space *X*, define the family of marked open sets as follows:

 $\mathcal{M}(\boldsymbol{X}) = \big\{ \langle \boldsymbol{x}, \boldsymbol{U} \rangle \in \boldsymbol{X} \times \tau(\boldsymbol{X}) : \boldsymbol{x} \in \boldsymbol{U} \big\}$

• Def. A T_1 space X is monotonically normal (MN) if X admits a monotone normality operator i.e. there is function $H: \mathcal{M}(X) \to \tau(X)$ such that

• $x \in H(x, U) \subset U$,

- if $x \notin V$ and $y \notin U$ then $H(x, U) \cap H(y, V) = \emptyset$.
- Metric and linearly ordered spaces are MN
- Are the monotonically normal spaces maximally resolvable?
- Thm. A dense-in-itself monotonically normal space is ω -resolvable.
- Fact. In a crowded monotonically normal space every point is an SD-point.

Problem (Ceder, Pearson 1967) Does ω-resolvable imply maximally resolvable?

Soukup, L (Rényi Institute)

11/25

X dense-in-itself, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

- If κ is an infinite cardinal, and F is an ultrafilter on κ define the space T_F as follows
- The underlying set is the everywhere κ -branching tree of height ω : $\kappa^{<\omega}$.
- $U \subset \kappa^{<\omega}$ is open iff for each $t \in U$ the set $\{\alpha < \kappa : t \cap \alpha \in U\} \in F$.
- T_F is monotonically normal: $H(t, V) = \{u \in V : [t, u] \subset V\}$
- *T_F* is ω-resolvable: if *I* ⊂ ω is infinite, then {*s* ∈ κ^{<ω} : |*s*| ∈ *I*} is dense in *T_F*.

Natural conjecture : If U is a uniform ultrafilter on ω_1 then T_F is not ω_1 -resolvable

Ceder - Pearson: Does ω-resolvable imply maximally resolvable?

X dense-in-itself, monotonically normal $\stackrel{?}{\Longrightarrow}$ X maximally resolvable?

Conjecture: If *F* is a uniform ultrafilter on ω_1 then T_F is **not** ω_1 -**resolvable**

- Thm (Juhász-S-Szentmiklóssy) If *F* is a uniform ultrafilter on some κ < ℵ_ω, then *T_F* is maximally resolvable.
- Thm (Juhász-S-Szentmiklóssy) Assume that $\kappa = cf(\kappa) \ge \lambda$. Then the following are equivalent.
 - Every MN space with $|X| = \Delta(X) = \kappa$ is λ -resolvable.
 - For every uniform ultrafilter *F* on κ , the space T_F is λ -resolvable.
- Corollary. Every MN space with $|X| < \aleph_{\omega}$ is maximally resolvable.
- Thm: (Juhász-Magidor) The following are equiconsistent:
 - There is a MN space that is not maximally resolvable.
 - There is a MN space X with $|X| = \Delta(X) = \aleph_{\omega}$ that is **not** ω_1 -resolvable.
 - There is a measurable cardinal.

- Since there are countable irresolvable spaces, and countable spaces are clearly Lindelöf, the following question of Malyhin is the natural one:
- Is it true that every Lindelöf space with $\Delta(X) > \omega$ is resolvable?
- Pavlov: Any Lindelöf space X with $\Delta(X) > \omega_1$ is ω -resolvable.
- Filatova: Any regular Lindelöf space X with $\Delta(X) = \omega_1$ is 2-resolvable.
- Juhász,S,Szentmiklóssy: a Lindelöf space with |X| = Δ(X) = ω₁ is maximally resolvable.
- Open: Is it true that every regular Lindelöf space of uncountable dispersion character is maximally resolvable?

14/25

- E. G. Pytkeev proved that crowded countably compact regular spaces are ω₁-resolvable
- different proof working for crowded countably compact π -regular spaces.
- However, no one of these proofs can reach either 2^ω-resolvability or maximal resolvability.
- Is it true that the countably compact, crowded regular spaces are maximally resolvable?

Resolvability of pseudocompact (feebly compact) spaces

- a tougher problem: weaken countably compact to pseudocompact.
- Thm. A crowded pseudocompact space X is 2^ω-resolvable provided
 (1) c(X) = ω (J. van Mill, 2016)
 - (2) $c(X) \leq 2^{\omega}$ (A. H. Ortiz-Castillo and Y. F. Tomita (2018))
 - (3) every complete, crowded metric space M with density $\leq c(X)$ has a "**Bernstein coloring**", i.e. a coloring $f: M \to 2^{\omega}$ such that $f''C = 2^{\omega}$ provided $C \subset M$ is a topological copy of the Cantor set. (Juhász,S,Szentmiklóssy)
- Hajnal, Juhász and Shelah: the failure of (3) is a large cardinal assumption.
- Hence, it is consistent that every crowded pseudocompact space is 2^ω-resolvable.
- Is it true that every pseudocompact, regular spaces X is resolvable (2^{\u03c6}-resolvable)?
- Is it true (or just consistent) that every pseudocompact, regular spaces X is maximally resolvable?

Between pseudocompactness and countably compactness

What can we say about resolvability of spaces with property *P*, where *P* is a property strictly stronger than pseudocompactness, but strictly weaker than countable compactness?

A zoo of spaces.

- X is countably compact
- X contains a dense subset D such that every A ∈ [D]^ω has an accumulation point
 (D is relatively countably compact in X)
- X contains dense subsets {D_n : n < ω} such that if a_n ∈ D_n for n < ω, then A = {a_n : n < ω} has an accumulation point.
- Player II has a winning strategy in the following game: in the nth turn of the game Player I chooses U_n ∈ τ⁺_X, then Player II selects a_n ∈ U_n. Player II wins iff A = {a_n : n < ω} has an accumulation point.
- if {U_n : n < ω} ⊂ τ⁺_X, then there are points a_n ∈ U_n for n < ω such that A = {a_n : n < ω} has an accumulation point.
 (X is sequentially pseudocompact)

- Any product of infinitely many non-singleton spaces is 2^ω-resolvable
- What about the product of two crowded spaces?
- Fact. If X and Y are neat, $|X| = \Delta(X) = |Y| = \Delta(Y)$, then $X \times Y$ is resolvable:
- Proof: Write $X = \{x_{\alpha} : \alpha < \kappa\}$ and $Y = \{y_{\alpha} : \alpha < \kappa\}$.
- Let $A = \{ \langle x_{\alpha}, y_{\beta} \rangle : \alpha < \beta < \kappa \}$ and $B = \{ \langle x_{\alpha}, y_{\beta} \rangle : \beta \le \alpha < \kappa \}.$
- A and B are dense subsets in $X \times Y$
- Problem: Assume that $|X| = \Delta(X) = |Y| = \Delta(Y)$. Is it true that $X \times Y$ is 3-resolvable?

Resolvability of product

- Fact. If X is κ -resolvable, then $X \times Y$ is κ -resolvable.
- Thm. If X is κ -resolvable, and $|Y| = \Delta(Y) = \kappa^+$, then $X \times Y$ is κ^+ -resolvable.
- Problem(Ceder and Pearson): Is the product of a maximally resolvable space with any other space maximally resolvable?
- Eckertson gave a consistent counterexample modulo the existence of a measurable cardinal.
- We also gave two counterexamples with some additional properties. Both constructions used the existence of a measurable cardinal.
- Do we really need large cardinals to construct counteraxamples for Ceder-Pearson problem?
- The intuition is that the answer should be no.
- Answering Malyhin's question we proved that the following are equiconsistent:

ovictoria of a manaurable cardinal

• there are two crowded 0-dimensional *T*₂ -spaces whose product is irresolvable.

Soukup, L (Rényi Institute)

Resolvable and irresolvable spaces

SUMTOPO 2024

19/25

Stepping up in resolvability

- Thm (Ceder and Pearson): there is an *n*-resolvable, but not *n* + 1 resolvable space for each 1 ≤ *n* < ω.
- **Hint**. Construct a space *X_n* which is the disjoint union of *n* dense, HI subsets.
- Then X_n is not n+1-resolvable.
- Thm: (Illanes) If a space X is *n*-resolvable for each $n \in \omega$, then X is ω -resolvable as well.
- Problem (Ceder and Pearson): Is there a space X with Δ(X) > ω such that X is ω-resolvable, but not ω₁-resolvable? (maximally resolvable)
- Assume that a space X is the union of countable many dense, HI subspaces. Is it true that X is not ω₁-resolvable?
- consistent counterexamples (El'kin, Malykhin, Eckertson, and Hu)
- Juhász-S-Szentmiklóssy: *D*-forced spaces.

Stepping up in resolvability

Def. If X is a topological space, D is a family of subsets of X, we define the notion of D-mosaic as follows: if U is a maximal cellular family of open sets, and D_U ∈ D for each U ∈ U, then the set

 $M(\mathcal{D},\mathcal{U}) = \bigcup \{ U \cap D_U : U \in \mathcal{U} \}$ is a \mathcal{D} -mosaic.

- Fact. if \mathcal{D} is a family of dense sets, then $M(\mathcal{D}, \mathcal{U})$ is dense.
- Thm. Assume that
 - $X = \langle \kappa, \tau \rangle$ is a homeomorphic to a dense subset of $D(2)^{2^{\kappa}}$, and
 - \mathcal{D} is a family of τ -dense subsets of X.

Then we can modify the topology τ to obtain a topology τ' such that

• $X' = \langle \kappa, \tau' \rangle$ is homeomorphic to a dense subset $D(2)^{2^{\kappa}}$, X' is nodec, and

• a set $A \subset \kappa$ is τ' -dense iff it contains a \mathcal{D} -mosaic.

- Corr. For each infinite cardinal λ there is 0-dimensional T₂ space X which is is λ-resolvable, but not λ⁺-resolvable.
- Proof $X \subset D(2)^{2^{\lambda}}$ dense, $|X| = \lambda$, $X = \bigcup \{D_{\alpha} : \alpha < \lambda\} \subset Dense(X)$, pairwise disjoint.

Soukup, L (Rényi Institute)

 $\forall \lambda \geq \omega$ there is 0-dimensional T_2 space X which is is λ -resolvable, but not λ^+ -resolvable.

- Natural question: Assume that λ is a limit cardinal and a space X is μ-resolvable for each μ < λ. Should X be λ-resolvable as well?
- Illanes: YES provided $\lambda = \omega$.
- Bashkara Rao: YES provided $cf(\lambda) = \omega$
- Juhász, S, Szentmiklóssy: NO provided λ is regular (that is, inaccessible).
- Assume that λ is a singular cardinal with cf(λ) > ω and X is a topological space that is μ-resolvable for all μ < λ. Is it true then that X is also λ-resolvable?

link

Resolvability in c.c.c generic extensions Adrienne Stanley, S

- Every crowded space X is ω -resolvable in $V^{Fn(|X|,2)}$.
- What we can say about λ-resolvability for λ > ω?
- A topological space is *monotonically* ω_1 -*resolvable* if there is a function $f: X \to \omega_1$ such that for each $\alpha < \omega_1$:

$$\{x \in X : f(x) \ge \alpha\} \subset^{dense} X.$$

- Thm. (Adrienne Stanley, S) TFAE:
 - X is ω_1 -resolvable in some c.c.c. generic extension;
 - X is monotonically ω_1 -resolvable;
 - X is ω_1 -resolvable in the Cohen-generic extension $V^{Fn(\omega_1,2)}$.
- Thm. (St, S) If X is c.c.c., and $\omega_1 \leq \Delta(X) \leq |X| < \aleph_{\omega}$, then X is monotonically ω_1 -resolvable.
- Thm. (St, S) It is consistent, modulo the existence of a measurable cardinal, that there is a space Y with |Y| = Δ(Y) = ℵ_ω which is not monotonically ω₁-resolvable.

Natural question: is it true that crowded spaces from the ground model
 Soukup, L (Rényi Institute) Resolvable and irresolvable spaces SUMTOPO 2024 23/25

- Thm. (A. H. Stone): Every partially ordered set (P, ≤) without maximal elements can be partitioned into two cofinal subsets.
- Corr. Every π -base of a crowded space can be decomposed into two π -bases.
- **Def.** A space X is base resolvable if every base of X can be decomposed into two bases.
- Thm. Every crowded metric space is base resolvable.
- Thm. (D. Soukup) Crowded Lindelöf spaces are base resolvable
- **Thm.** (S) It is consistent that there is a first countable, 0-dimensional, *T*₂ space which is not base-resolvable.

• ZFC example?

• What about linearly ordered spaces? (Hereditarily) separable spaces? Paracompact spaces?

Thank you.

Soukup, L (Rényi Institute)

Resolvable and irresolvable spaces

SUMTOPO 2024

25/25