Game-theoretic results in regards to cardinal functions

Lucas Chiozini de Souza¹ (joint work with Angelo Bella and Santi Spadaro)

Università degli Studi di Palermo

12 July 2024

¹The author gracefully acknowledges the "National Group for Algebraic and Geometric Structures and their Applications" (GNSAGA - INdAM) for the support

Theorem (Arhangel'skii)

Let X be a Hausdorff space. Then, $|X| \leq 2^{\chi(X)L(X)}$. In particular, if X is a Hausdorff, Lindelöf, first-countable space, then $|X| \leq 2^{\aleph_0}$.

Theorem (Arhangel'skii)

Let X be a Hausdorff space. Then, $|X| \leq 2^{\chi(X)L(X)}$. In particular, if X is a Hausdorff, Lindelöf, first-countable space, then $|X| \leq 2^{\aleph_0}$.

Question (Arhangel'skii)

Is $|X| \le 2^{\aleph_0}$ for all Lindelöf spaces with point G_δ ? What about for all T_1 first-countable spaces?

Theorem (Arhangel'skii)

Let X be a Hausdorff space. Then, $|X| \leq 2^{\chi(X)L(X)}$. In particular, if X is a Hausdorff, Lindelöf, first-countable space, then $|X| \leq 2^{\aleph_0}$.

Question (Arhangel'skii)

Is $|X| \le 2^{\aleph_0}$ for all Lindelöf spaces with point G_δ ? What about for all T_1 first-countable spaces?

Theorem (Gorelic)

There is a model in which CH holds, 2^{\aleph_1} is arbitrarily large and where there is a T_2 , zero-dimensional Lindelöf space with points G_δ and cardinality 2^{\aleph_1} .

Theorem (Arhangel'skii)

Let X be a Hausdorff space. Then, $|X| \leq 2^{\chi(X)L(X)}$. In particular, if X is a Hausdorff, Lindelöf, first-countable space, then $|X| \leq 2^{\aleph_0}$.

Question (Arhangel'skii)

Is $|X| \le 2^{\aleph_0}$ for all Lindelöf spaces with point G_δ ? What about for all T_1 first-countable spaces?

Theorem (Gorelic)

There is a model in which CH holds, 2^{\aleph_1} is arbitrarily large and where there is a T_2 , zero-dimensional Lindelöf space with points G_δ and cardinality 2^{\aleph_1} .

Theorem (Scheepers, Tall)

If X be a space with points G_{δ} such that $\Pi \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$, then $|X| \leq 2^{\aleph_0}$.

Why the cellularity game?

Definition

The cellularity game of length κ , $G_1^{\kappa}(\mathcal{O}_D, \mathcal{O}_D)$ is the game between players I and II such that, at each inning $\alpha < \kappa$, I plays some $\mathcal{U}_{\alpha} \in \mathcal{O}_D$, II picks some $\mathcal{U}_{\alpha} \in \mathcal{U}_{\alpha}$ and II wins if $\{\mathcal{U}_{\alpha} : \alpha < \kappa\} \in \mathcal{O}_D$.

Why the cellularity game?

Definition

The cellularity game of length κ , $G_1^{\kappa}(\mathcal{O}_D, \mathcal{O}_D)$ is the game between players I and II such that, at each inning $\alpha < \kappa$, I plays some $\mathcal{U}_{\alpha} \in \mathcal{O}_D$, II picks some $\mathcal{U}_{\alpha} \in \mathcal{U}_{\alpha}$ and II wins if $\{\mathcal{U}_{\alpha} : \alpha < \kappa\} \in \mathcal{O}_D$.

Definition

Given a space X, we define:

 $c(X) := \sup\{|\mathcal{C}| : \mathcal{C} \text{ is a cellular family of } X\} \cdot \omega;$

 $\hat{c}(X) := \min\{\kappa : X \text{ has no cellular family of size } \kappa\}.$

Lemma

For any space X, $II \uparrow G_1^{\hat{c}(X)}(\mathcal{O}_D, \mathcal{O}_D)$.

Why the cellularity game?

Definition

The cellularity game of length κ , $G_1^{\kappa}(\mathcal{O}_D, \mathcal{O}_D)$ is the game between players I and II such that, at each inning $\alpha < \kappa$, I plays some $\mathcal{U}_{\alpha} \in \mathcal{O}_D$, II picks some $\mathcal{U}_{\alpha} \in \mathcal{U}_{\alpha}$ and II wins if $\{\mathcal{U}_{\alpha} : \alpha < \kappa\} \in \mathcal{O}_D$.

Definition

Given a space X, we define:

 $c(X) := \sup\{|\mathcal{C}| : \mathcal{C} \text{ is a cellular family of } X\} \cdot \omega;$

 $\hat{c}(X) := \min\{\kappa : X \text{ has no cellular family of size } \kappa\}.$

Lemma

For any space X, $II \uparrow G_1^{\hat{c}(X)}(\mathcal{O}_D, \mathcal{O}_D)$.

Remark

 $II \uparrow G_1^{\omega}(\mathcal{O}_D, \mathcal{O}_D) \longrightarrow c(X) = \omega \longrightarrow II \uparrow G_1^{\omega_1}(\mathcal{O}_D, \mathcal{O}_D) \longrightarrow c(X) \leq \omega_1$

Theorem (Shapirovski)

Let X be a regular spaces. Then, $|X| \le \pi \chi(X)^{c(X)\psi(X)}$.

Theorem (Shapirovski)

Let X be a regular spaces. Then, $|X| \leq \pi \chi(X)^{c(X)\psi(X)}$.

Question

Let X be a regular space such that $\psi(X) = \omega$, $\pi \chi(X) \leq 2^{\omega}$ and $II \uparrow G_1^{\omega_1}(\mathcal{O}_D, \mathcal{O}_D)$. Is it necessarily true that $|X| \leq 2^{\omega}$?

Theorem (Shapirovski)

Let X be a regular spaces. Then, $|X| \leq \pi \chi(X)^{c(X)\psi(X)}$.

Question

Let X be a regular space such that $\psi(X) = \omega$, $\pi \chi(X) \leq 2^{\omega}$ and $II \uparrow G_1^{\omega_1}(\mathcal{O}_D, \mathcal{O}_D)$. Is it necessarily true that $|X| \leq 2^{\omega}$?

Proposition

 $(2^{\omega_1}=2^{\omega})$ Let X be a regular space such that $\psi(X)=\omega$, $\pi\chi(X)\leq 2^{\omega}$ and $II\uparrow G_1^{\omega_1}(\mathcal{O}_D,\mathcal{O}_D)$. Then, $|X|\leq 2^{\omega_1}=2^{\omega}$.

Lemma

If $2^{<\kappa} = \kappa$, then there is a almost disjoint family $\mathcal{A} \subset [\kappa]^{\kappa}$ such that $|\mathcal{A}| = 2^{\kappa}$.

Lemma

If $2^{<\kappa} = \kappa$, then there is a almost disjoint family $\mathcal{A} \subset [\kappa]^{\kappa}$ such that $|\mathcal{A}| = 2^{\kappa}$.

For each $A \in \mathcal{A}$, we construct a uniform ultrafilter $\mathcal{U}_A \subset [\kappa]^{\kappa}$ such that $A \in \mathcal{U}_A$ and define the space $X := D(\kappa) \cup \{\mathcal{U}_A : A \in \mathcal{A}\}$ with the topology generated by $\{[S] : S \subset \kappa\}$, where $[S] = S \cup \{\mathcal{U}_A : A \in \mathcal{A} \land S \in \mathcal{U}_A\}$. Thus X is a subspace of $\beta(D(\kappa))$.

Theorem

(GCH) If κ is a successor cardinal, then there is a Tychonoff space X such that $\psi(X) < \kappa$, $\pi\chi(X) \le \kappa = 2^{<\kappa}$ and $\Pi \uparrow G_1^{\kappa}(\mathcal{O}_D, \mathcal{O}_D)$, but $|X| = 2^{\kappa} > \kappa = 2^{<\kappa}$.

Question

Let X be a regular space such that $\psi(X) = \omega$, $\pi \chi(X) \leq 2^{\omega}$ and $II \uparrow G_1^{\omega_1}(\mathcal{O}_D, \mathcal{O}_D)$. Is it necessarily true that $|X| \leq 2^{\omega}$?

Proposition

 $(2^{\omega_1}=2^{\omega})$ Let X be a regular space such that $\psi(X)=\omega$, $\pi\chi(X)\leq 2^{\omega}$ and $II\uparrow G_1^{\omega_1}(\mathcal{O}_D,\mathcal{O}_D)$. Then, $|X|\leq 2^{\omega_1}=2^{\omega}$?

Theorem

(CH) There is a Tychonoff space X such that $\psi(X) = \omega$, $\pi \chi(X) \leq \omega_1 = 2^{\omega}$ and $\Pi \uparrow G_1^{\omega_1}(\mathcal{O}_D, \mathcal{O}_D)$, but $|X| = 2^{\omega_1} > \omega_1 = 2^{\omega}$.

Theorem (Hajnal, Juhász)

Let X be a Hausdorff space. Then, $|X| \leq 2^{\chi(X)c(X)}$.

Theorem (Hajnal, Juhász)

Let X be a Hausdorff space. Then, $|X| \leq 2^{\chi(X)c(X)}$.

Theorem (Arhangel'skii)

Let X be a Hausdorff space. Then, $|X| \leq 2^{\chi(X)L(X)}$.

Definition

- L(X) is the least infinite cardinal κ such that given an open cover of X, there is a subcover of cardinality $\leq \kappa$
- $c(X) = \sup\{|\mathcal{C}| : \mathcal{C} \text{ is a cellular family of } X\}$
- wL(X) is the least infinite cardinal κ such that given an open cover \mathcal{U} of X, there is a subcollection $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ such that $\overline{\bigcup \mathcal{V}} = X$
- $\chi(X)$ is the least infinite κ such that every point of X has a local base of cardinality $\leq \kappa$

Theorem (Bell, Ginsburg, Woods)

Let X be a normal space. Then, $|X| \leq 2^{\chi(X)wL(X)}$.

Theorem (Bell, Ginsburg, Woods)

Let X be a normal space. Then, $|X| \leq 2^{\chi(X)wL(X)}$.

Theorem

There is a Hausdorff space Z such that $|Z| > 2^{\chi(Z)wL(Z)}$.

Theorem (Bell, Ginsburg, Woods)

Let X be a normal space. Then, $|X| \leq 2^{\chi(X)wL(X)}$.

Theorem

There is a Hausdorff space Z such that $|Z| > 2^{\chi(Z)wL(Z)}$.

Question (Bell, Ginsburg, Woods)

Is it true for every regular space X that $|X| \le 2^{\chi(X)wL(X)}$? Is $|X| \le 2^{t(X)\psi(X)wL(X)}$ for every normal space X?

Theorem (Bell, Ginsburg, Woods)

Let X be a normal space. Then, $|X| \leq 2^{\chi(X)wL(X)}$.

Theorem

There is a Hausdorff space Z such that $|Z| > 2^{\chi(Z)wL(Z)}$.

Question (Bell, Ginsburg, Woods)

Is it true for every regular space X that $|X| \le 2^{\chi(X)wL(X)}$? Is $|X| \le 2^{t(X)\psi(X)wL(X)}$ for every normal space X?

Theorem (Aurichi, Bella, Spadaro)

Let X be a Urysohn space such that $\chi(X) < \kappa$, $\Pi \uparrow G_1^{\kappa}(\mathcal{O}, \mathcal{O}_D)$. Then, $|X| \leq 2^{<\kappa}$.

A few improvements

Theorem (Gotchev, Tkachuk, Tkachenko)

Let X be a Hausdorff space. Then $|X| \leq \pi w(X)^{ot(X).\psi_c(X)}$.

Theorem (Bella, —, Spadaro)

Let X be a regular space such that $ot(X) \cdot \psi(X) < \kappa$, $\chi(X) \le 2^{<\kappa}$ and $II \uparrow G_1^{\kappa}(\mathcal{O}, \mathcal{O}_D)$. Then, $|X| \le 2^{<\kappa}$.

A few improvements

Theorem (Gotchev, Tkachuk, Tkachenko)

Let X be a Hausdorff space. Then $|X| \leq \pi w(X)^{ot(X).\psi_c(X)}$.

Theorem (Bella, —, Spadaro)

Let X be a regular space such that $ot(X) \cdot \psi(X) < \kappa$, $\chi(X) \le 2^{<\kappa}$ and $II \uparrow G_1^{\kappa}(\mathcal{O}, \mathcal{O}_D)$. Then, $|X| \le 2^{<\kappa}$.

Theorem (Spadaro)

Let X be a regular space with a dense set of points of π -character $\leq 2^{<\kappa}$ where player II has a winning strategy in $G_1^{\kappa}(\mathcal{O}_D,\mathcal{O}_D)$. Then $\pi w(X) \leq 2^{<\kappa}$.

A few improvements

Theorem (Bella, —, Spadaro)

Let X be a regular space such that $ot(X) \cdot \psi(X) < \kappa$, $\chi(X) \le 2^{<\kappa}$ and $II \uparrow G_1^{\kappa}(\mathcal{O}, \mathcal{O}_D)$. Then, $|X| \le 2^{<\kappa}$.

Corollary (Spadaro)

Let X be a regular space with a dense set of points of π -character $\leq 2^{<\kappa}$ such that $ot(X) \cdot \psi(X) < \kappa$, $II \uparrow G_1^{\kappa}(\mathcal{O}_D, \mathcal{O}_D)$. Then $|X| \leq 2^{<\kappa}$.

Theorem,

There is a regular space which has a dense set of points of countable π -character such that $t(X) \cdot \psi(X) = \omega$ and $II \uparrow G_1^{\omega}(O, \mathcal{O}_D)$, but its cardinality is arbitrarily large.

Thanks!

Thank you for your attention!

Game-theoretic results in regards to cardinal functions

Lucas Chiozini de Souza¹ (joint work with Angelo Bella and Santi Spadaro)

Università degli Studi di Palermo

12 July 2024

¹The author gracefully acknowledges the "National Group for Algebraic and Geometric Structures and their Applications" (GNSAGA - INdAM) for the support