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Vietoris Modalities: □, ^

Main message: Vietoris has a nice dual.*

*Even for closed relations.
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Stone duality

Stone spaces
(= comp. Hausd. + clopens

separate points)
Boolean algebras

X 7→ Clopens(X)

Stone op BA

V K

Vietoris provides Kripke semantics for modal logic.

Algebras for K = modal algebras.

Coalgebras for V = descriptive frames.
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Stone spaces Boolean algebras
Vietoris hyperspace ↭ Free first layer of modality

X A

f f

V(X) K(A) =
FreeBA({□a ,^a |a∈A })

modal algebras axioms

f : X → Y cont. funct. g : A → B Bool. hom.

f f

f [−] : V(X)→ V(Y) K(g) : K(A)→ K(B)

The clopens of the Vietoris hyperspace V(X) of a Stone space X are all
Boolean combinations of

^U B {K ∈ V(X) | K ∩ U , ∅}, U clopen of X

□U B {K ∈ V(X) | K ⊆ U} U clopen of X .
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Marco Abbadini Vietoris endofunctor for closed relations and its de Vries dual 4 / 22



But...
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KHaus op DeV

V ?

Question (Bezhanishvili, Bezhanishvili, Harding, 2015)

What is the De Vries dual of the Vietoris endofunctor on the category of
compact Hausdorff spaces and continuous functions?
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Compact Hausdorff space↔ Stone space + closed equivalence relation.

Stone G(X) G(Y) Stone

KHaus X Y KHaus

∋ ↫→ ∈

∋
f

∈

Continuous functions↔ certain closed relations between covers.

A closed relation R : X ↬ Y is a subset R ⊆ X × Y that is closed;
equivalently, such that

▶ R−1[closed] is closed,

▶ R[closed] is closed.
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In this same conference...

▶ Specification properties in CR-dynamical systems, Ivan Jelić.
▶ Orbit structure in CR-dynamical systems, Andrew Wood.
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StoneR op BAS

closed relations subordinations

Stone spaces Stone locales Boolean algebras
Closed relations Preframe hom. Subordinations

(= Scott-cont. funct.) (= approximable mapp.)
De Groot self-dual. Lawson self-duality Order-self-duality
cl.↭ comp. sat. elm.↭ Scott-op. filt. ≤↭ ≥
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Dual of a closed relation:

X Clop(X)

Y Clop(Y)

↫→ R ↫→S
For V ∈ Clop(Y) and U ∈ Clop(X):

V S U ⇐⇒ R−1[V ] ⊆ U

Example:

X Clop(X)

X Clop(X)

↫→ = ↫→⊆
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Subordination B a relation S : A ↬ B such that n∨
i=1

ai

 S

 m∧
j=1

bj

 ⇐⇒ ∀i, j ai S bj .

Theorem (Celani, 2018)

StoneR (closed relations) is dual to BAS (subordinations).
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Extension of V from Stone to StoneR [Goy, Petrişan, Aiguier, 2021]:

Stone Stone

X V(X)

Y V(Y)

VR

↫→ R ↫→ VR(R)

(Egli-Milner:) For K ∈ V(X) and L ∈ V(Y),

K VR(R) L ⇐⇒

∀x ∈ K ∃y ∈ L : x R y,

∀y ∈ L ∃x ∈ K : x R y.

It restricts to the usual Vietoris functor on continuous functions.
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StoneR op BAS

VR ?

What is the dual of VR?
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On morphisms:

X V(X)

Y V(Y)

B K(B) = FreeBA({□b ,^b | b ∈ B})/∼

A K(A) = FreeBA({□a ,^a | a ∈ A })/∼

↫→ R ↫→ VR(R)

↫→S ↫→KS(S)?

We shall describe when an element α of K(A) is KS(S)-related with an
element β of K(B).
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Let X be a Stone space, and A ,B ,C ,D clopens. Solve:

(^A ∪ □C) ∩ □B ⊆ ^C ∪ □D.

(^A ∩ □B) ∪ (□C ∩ □B) ⊆ ^C ∪ □D.

^A ∩ □B ⊆ ^C ∪ □D. □C ∩ □B ⊆ ^C ∪ □D.

^(A ∩ B) ∩ □B ⊆ ^C ∪ □(C ∪ D).

(A ∩ B ⊆ C) or (B ⊆ C ∪ D).

...

(Always)

Key idea: ^-with-^ or □-with-□ [Cederquist, Coquand, 1998]

Let X be a Stone space, let A1, . . . ,An,B ,C ,D1, . . . ,Dm be clopens with
Ai ⊆ B and C ⊆ Dj :

^A1 ∩ · · · ∩ ^An ∩ □B ⊆ ^C ∪ □D1 ∪ · · · ∪ □Dm

⇕

(∃i : Ai ⊆ C) or (∃j : B ⊆ Dj).
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Theorem (A., Bezhanishvili, Carai, 2024)

The dual of the Vietoris endofunctor VR : StoneR → StoneR is the
following endofunctor KS : BAS → BAS:

▶ On objects: it maps A to

K(A) B
FreeBA({□a ,^a | a ∈ A })
modal algebra axioms

▶ On morphisms: it maps a subordination S : A ↬ B to the unique
subordination KS(S) : K(A)↬ K(B) satisfying “^-with-^ or
□-with-□”.

“^-with-^ or □-with-□”: (With ai ≤ b and c ≤ dj :)

(^a1 ∧ · · · ∧ ^an ∧ □b) K
S(S) (^c ∨ □d1 ∨ · · · ∨ □dm)

⇕

(∃i : ai S c) or (∃j : b S dj).
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An application
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We apply it to solve

Question (Bezhanishvili, Bezhanishvili, Harding, 2015)

What is the De Vries dual of the Vietoris endofunctor on compact
Hausdorff spaces?
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Conclusions
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Key ideas

1. Beyond functions: closed relations↔ preframe hom. ↔
subordinations between Boolean algebras.

2. For the Vietoris’s dual: “^-with-^ or □-with-□” [Cederquist,
Coquand, 1998] (see also [Kawai, 2020]):∧

i

^ai

 ∧ □b ≤ ^c ∨

∨
j

□dj

⇔ (∃i : ai ≤ c) or (∃j : b ≤ dj).

3. Our packaging of these ideas:
▶ Stone dual description of VR : StoneR

→ StoneR;
▶ de Vries dual description of V : KHaus→ KHaus and for relations.

M. Abbadini, G. Bezhanishvili, L. Carai.
Vietoris endofunctor for closed relations and its de Vries dual.
Topology Proceedings, to appear. Available on arxiv:2308.16823.
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Vietoris has a nice dual.*

*Even for closed relations.
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Appendix
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Question (Bezhanishvili, Bezhanishvili, Harding, 2015)

What is the De Vries dual of the Vietoris endofunctor on the category of
compact Hausdorff spaces and continuous functions?
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De Vries duality connects compact Hausdorff spaces with (Stone spaces
and) Boolean algebras.

Every compact Hausdorff space X is a continuous image of a Stone
space (e.g., its Gleason cover). So it can be presented via

Stone space + closed equivalence relation.

Stone G(X)

G(Y) Stone

KHaus X

Y KHaus

∋ ↫→ ∈

∋
f

∈
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Theorem (A., Bezhanishvili, Carai, 2024)

The de Vries dual of the Vietoris endofunctor on KHaus is obtained by
applying KS (= the dual of VR : StoneR → StoneR), followed by a(n
appropriate) MacNeille completion.

X Y (B ,≺B) (A ,≺A )

(K(B),KS(≺B)) (K(A),KS(≺A ))

V(X) V(Y) M(K(B),KS(≺B)) M(K(A),KS(≺A ))

↫ →
R ↫→ S

↫→KS(S)

↫→
VR(R) ↫→M(KS(S))

where M is an appropriate MacNeille completion functor.
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