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This talk is based on a recent joint work with Udayan Darji (University of

Louisville, USA) and Paulo Varandas (CMUP and Federal University of

Bahia, Brazil), where we generalize the class of weighted shifts and the

well-known dynamical information about them.
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New operators

We consider linear operators defined by the following procedure:

• Take a Banach space X over a field K = R or C.

• Consider a sequence S = (Sn)n∈Z of linear bounded invertible

operators on X .

• Given a Banach space B ⊂ XZ, and a vector in B, apply the

matrices (Sn)n coordinate wise and then shift the resulting sequence.
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This way, we define a linear operator

σS : B → B

by

σS
(
(xn)n∈Z

)
=
(
Sn+1 (xn+1)

)
n∈Z.

We call such a map a shift operator generated by the sequence S.
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To ensure that σS is well defined and a bounded invertible operator we

will always assume that there exists C > 0 such that

max
n∈Z

{
∥Sn∥, ∥S−1

n ∥
}

< C .
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Example
Consider d ∈ N, X = Rd endowed with the Euclidean norm and a

sequence (Sn)n∈Z of d-dimensional invertible matrices

Sn : Rd → Rd .

Then, for every 1 ≤ p < +∞, the shift operator σS may be defined on

B = ℓp(Rd).

In particular, when d = 1 and Sn : R → R is given by

Sn(x) = ωn x

for a bounded sequence ω = (ωn)n∈Z of real numbers such that

infn∈Z |ωn| > 0, then σS is precisely the bilateral weighted backward shift

Bω

(
(xn)n∈Z

)
=
(
ωn+1 xn+1

)
n∈Z.
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Inspiring setting

The family of weighted shifts has been playing an essential role in the

study of linear dynamics, resembling the importance symbolic dynamics

attained in topological dynamics and ergodic theory.

It was a simple matter of choosing proper weights to be able to

distinguish canonical dynamical properties such as transitivity, weak

mixing, mixing and chaoticity by using weighted shifts.

Moreover, weighted shifts helped to determine whether well-known

results or dynamical properties of classical linear dynamics in finite

dimension hold in the setting of infinite dimensional Banach spaces.
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Hyperbolicity

For instance, in finite dimensional Banach spaces, hyperbolicity1 is a

Baire generic property in the set of linear bounded invertible operators.

Besides, in this finite dimensional setting,2

hyperbolicity ⇔ shadowing property ⇔ structural stability.

1A linear bounded invertible operator T : X → X is hyperbolic if there are closed

T−invariant subspaces M and N of X such that X = M ⊕ N and T |M , T−1 |N are

uniform contractions.
2J. Ombach. The shadowing lemma in the linear case. 1994
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Shadowing

What is the relationship between hyperbolicity and the shadowing

property3 in infinite dimensional Banach spaces?

It is known that we always have

hyperbolicity ⇒ shadowing property.

Yet, until 2018, it was an open problem whether the shadowing property

implies hyperbolicity in infinite dimensional spaces.

3T has the shadowing property if for every ε > 0 there exists δ > 0 such that for

any sequence (xn)n∈ Z satisfying ∥T (xn)− xn+1∥ ≤ δ for all n ∈ Z there exists x ∈ X

such that ∥T n(x)− xn∥ ≤ ε for all n ∈ Z.
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This was settled negatively4 by constructing a weighted backward shift

which has the shadowing property, is structurally stable, but is not

hyperbolic.

4N. Bernardes et al. Expansivity and shadowing in linear dynamics. 2018
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In the process of establishing this result, a weaker5 notion of

hyperbolicity arose, nowadays called generalized hyperbolicity.

It turns out that6

generalized hyperbolicity ⇒ shadowing property.

5A linear bounded invertible operator T : X → X is generalized hyperbolic if there

are closed subspaces M and N of X such that T (M) ⊂ M, T−1(N) ⊂ N, X = M ⊕N

and T |M , T−1 |N are uniform contractions.
6P. Cirilo et al. Dynamics of generalized hyperbolic linear operators. 2021
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A characterization of weighted backward shifts on ℓp(Z), 1 ≤ p < +∞,

or c0(Z) with the shadowing property was given by Bernardes and

Messaoudi7, yielding that, for weighted backward shifts,

generalized hyperbolicity ⇔ shadowing property.

It was also established that we always have

generalized hyperbolicity ⇒ structural stability

and

hyperbolicity ⇔ shadowing property + expansivity.

7N. Bernardes et al. Shadowing and structural stability for operators. 2021; N.

Bernardes et al. A generalized Grobman-Hartman theorem. 2022
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Koopman operators

Apart from the class of weighted backward shifts, the equivalence

between generalized hyperbolicity and the shadowing property was also

established for a large family of operators in Lp spaces, the well-studied

composition operators8.

8E. D’Aniello et al. Generalized hyperbolicity and shadowing in Lp spaces. 2021
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Shift-like operators

Moreover, for a special type of them, called shift-like operators9, it was

shown that such operators admit a weighted backward shift as a factor,

and that the operator satisfies a given property P if and only if its

weighted backward shift factor does, where P is one of numerous

properties, such as shadowing, expansivity, transitivity, mixing, etc.

9E.D’Aniello et al. Shift-like operators on ℓp(X ). 2022
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Open question

So far, all known examples of linear invertible bounded operators on

Banach spaces with the shadowing property are generalized hyperbolic.

This motivates the question whether, conversely, every linear invertible

bounded operator on a Banach space satisfying the shadowing property is

generalized hyperbolic.

We expect that the extension of weighted backward shifts I am reporting

on may pave the way for relevant new information regarding this and

other questions.
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New results: a rich family of examples

We have proved that the class of shift operators comprises, up to linear

conjugation:

• linear bounded invertible dissipative10 operators,

• shift-like operators,

• finite products of weighted backward shifts,

• some skew-products of weighted backward shifts.

10T : X → X is dissipative if there exists a closed subspace E0 ⊂ X such that the

collection
(
T n(E0)

)
n∈ Z satisfies X = span

(
⊕n∈ Z En

)
, where En = T (E0).
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New results: a classification

We have classified large classes of shift operators, including those

generated by orthogonal matrices, diagonalizable matrices, hyperbolic

matrices and suitable combinations of these.

This classification yields verifiable conditions which we used to construct

examples of shift operators with a variety of dynamical properties.

As a consequence, we have shown that, for relevant new classes of linear

operators,

generalized hyperbolicity ⇔ shadowing property.
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1. Dissipative operators

Our first result shows that the family of shift operators includes, up to

linear conjugation, the dissipative ones.

Theorem 1 (MC, U. Darji, P. Varandas (2024))

Suppose that T : X → X is a linear bounded invertible dissipative

operator on a Banach space X . Then T is linearly conjugate to a shift

operator σS : B → B, where B is a Banach space, S = (Sn)n∈Z and Sn is

the identity map for every n ∈ Z.
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Remark 1

The proof of Theorem 1 does not provide, in general, an explicit

description of the Banach space B where the shift operator is defined.

However, under additional assumptions or within specific frameworks, we

succeeded in describing this underlying space.

One such framework is the class of composition operators.
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Remark 2

Even though all the operators Sn are the identity map, the shift operator

σS can exhibit a variety of dynamical behaviors.

For instance, as happens with subshifts in symbolic dynamics, the shift

operator σS may or may not have the shadowing property, be or not be

transitive, be or not be expansive, etc., depending on the underlying

space.
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2. Main question

May we know in advance, from properties of the sequence (Sn)n, if the

corresponding shift operator has non-trivial recurrence, or has the

shadowing property, or is hyperbolic, or generalized hyperbolic, or

expansive, etc.?
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Orthogonal basis

Let us see our answer to this question for a special class of sequences

S = (Sn)n∈Z.

Definition 2
Suppose that X is a Hilbert space. We say that a sequence S = (Sn)n∈Z

of linear bounded invertible operators on X has an orthogonal basis E in

X if {en(b) : b ∈ E} is orthogonal for every n ∈ Z, where, for each b ∈ E ,

en(b) =



S−1
n ◦ ... ◦ S−1

1 (b)

∥ S−1
n ◦ ... ◦ S−1

1 (b)∥ if n ≥ 1

b
∥b∥ if n = 0

Sn+1 ◦ ... ◦ S0 (b)
∥ Sn+1 ◦ ... ◦ S0 (b)∥ if n ≤ −1

.
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Moving referential

We note that, by construction, if Sn = L for all n ∈ Z, then (en(b))n∈Z is

the normalized orbit of b ∈ E by L.

Moreover, in general one has

Sn+1

(
en+1(b)

)
= ωn+1(b) en(b) ∀ n ∈ Z , ∀ b ∈ E

where
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given x ∈ X \ {0}, the sequence of weights

ω(x) = (ωn(x))n∈Z ∈ RZ

is defined by

ωn(x) =



∥x∥
∥S−1

1 (x)∥ if n = 1

∥S−1
n−1 ... S

−1
1 (x)∥

∥S−1
n ... S−1

1 (x)∥ if n > 1

∥S0(x)∥
∥x∥ if n = 0

∥Sn ... S0(x)∥
∥Sn+1 ... S0(x)∥ if n < 0.
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Suitable weights

Since we are assuming that there exists C > 0 such that

max
n∈Z

{
∥Sn∥, ∥S−1

n ∥
}

< C

we are sure that the sequence
(
ωn(x)

)
n∈Z is bounded and satisfies

inf
n∈Z

|ωn| > 0.
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Example

If d ∈ N and Sn is an orthogonal d × d matrix in Rd for every n ∈ Z,
then any orthogonal basis E of X is an orthogonal basis for the sequence

S = (Sn)n∈Z.

In this case, it is known that each Sn is a scalar multiple of an isometry,

say Sn = αn In, with αn ∈ R \ {0} and In an isometry.

Thus, ωn(x) = |αn| for every n ∈ Z and x ∈ X \ {0}.
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3. Factors of shift operators

By the next result we find weighted backward shifts defined on ℓp(K), for

1 ≤ p < +∞, as factors of shift operators.

Theorem 3 (MC, U. Darji, P. Varandas (2024))

Let X be a Hilbert space over the field K and suppose that the sequence

of operators S = (Sn)n∈Z on X has an orthogonal basis E . Then, given
1 ≤ p < +∞, for any b ∈ E the weighted backward shift

Bω(b) : ℓp(K) → ℓp(K)

is a factor of the shift operator σS : ℓp(X ) → ℓp(X ).
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Consequence

The following immediate consequence of the previous result is due to the

fact that, in general, factors preserve transitivity, mixing and the

shadowing property.

Corollary 4

Under the assumptions of the previous theorem, if σS is transitive, mixing

or has the shadowing property, then the same holds for Bω(b) for all

b ∈ E .



1 2 3 4 5 6 7

Accordingly, to prove that σS does not have a property in question

(transitive, mixing or shadowing), we may simply find b ∈ E such that

Bω(b) does not have the corresponding property.
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4. Finite products of weighted shifts

Given a finite number of copies of the Banach space ℓp(K), we endow

the product vector space with the sum norm.

The next result provides sufficient conditions for a shift operator to be

linearly conjugate to a finite product of weighted backward shifts.
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Classification theorem I

Theorem 5 (MC, U. Darji, P. Varandas (2024))

Let X be a finite dimensional Hilbert space over the field K and assume

that the sequence S = (Sn)n∈Z has an orthogonal basis E . Then, for
each 1 ≤ p < +∞, the operator σS : ℓp(X ) → ℓp(X ) is linearly conjugate

to the finite product of weighted backward shifts∏
b∈E

Bω(b) :
(
ℓp(K)

)dimX →
(
ℓp(K)

)dimX

where dimX stands for the dimension of X .
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Remark 1

One may wonder why the weights ωn are real numbers despite the fact

that the underlying field K may be C.

Actually, it is well-known that every weighted backward shift on C with

complex weights is linearly conjugate to a weighted backward shift with

positive weights.11.

Moreover, every weighted backward shift with positive weights over C
can easily be seen as linearly conjugate to the product of two weighted

backward shifts with positive weights over R.

11F. Mart́ınez-Giménez, A. Peris. Chaos for backward shift operators. 2002
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Remark 2

The assumptions on the previous theorem seem restrictive.

So we looked for alternative statements where orthogonality might be

replaced by more general assumptions.
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Given a Banach space X and a vector x ∈ X , let Fx ⊂ X denote the

subspace spanned by x .

Consider a basis E of X , b ∈ E and the projection Πb : X → Fb given by

Πb

(∑
e ∈E

αe e

)
= αb b

for any sequence of scalars (αe)e ∈E in K.

For every b ∈ E , the map Πb is well defined, since every vector in X has

a unique representation in terms of vectors in E ; moreover, Πb is linear,

bounded and Πb ◦ Πb = Πb.
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5. S−bounded projections

Definition 6
Given a sequence S = (Sn)n∈Z of linear bounded invertible operators on

a Banach space X , we say that a basis E of X has S−bounded

projections if there exists C > 0 such that

sup
n∈Z

sup
b∈En

∥Πb∥ ≤ C < +∞

where En = {en(x) : x ∈ E}.
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Classification theorem II

Theorem 7 (MC, U. Darji, P. Varandas (2024))

Let X be a finite dimensional Banach space, S = (Sn)n∈Z be a sequence

of linear bounded invertible operators on X and E be a basis of X with

S−bounded projections. Then, for each 1 ≤ p < +∞, the shift operator

σS : ℓp(X ) → ℓp(X ) is linearly conjugate to the finite product of

weighted backward shifts∏
b∈E

Bω(b) : (ℓp(K))dimX → (ℓp(K))dimX .
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Consequence 1

The previous theorem allows us to strengthen the Classification theorem I

by replacing orthogonality with suitable uniform lower and upper bounds

on the angles between distinct vectors in each basis En.



1 2 3 4 5 6 7

Corollary 8

Let X be a finite dimensional Hilbert space with dimension dimX ≥ 2

and assume that S = (Sn)n∈Z has a basis E of X for which there exists

0 < γ < 1/(dimX − 1)

such that, for every n ∈ Z, the angle ∡(u, v) between distinct vectors

u, v ∈ En satisfies the condition

cos∡(u, v) ∈ [−γ, γ].

Then, E has S−bounded projections and so, given 1 ≤ p < +∞, the

shift σS : ℓp(X ) → ℓp(X ) is linearly conjugate to the finite product∏
b∈E

Bω(b) :
(
ℓp(K)

)dimX →
(
ℓp(K)

)dimX
.
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Observe that, as d goes to infinity, the requirement in the previous

corollary gets closer to orthogonality.
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Consequence 2
The next corollary provides a way of improving the Classification theorem

I by establishing another sufficient condition, which does not depend on

the dimension d of the Hilbert space X , for a sequence S = (Sn)n∈Z to

have S−bounded projections.

Given a Hilbert space X , a subspace F ⊂ X and a vector v ∈ X \ {0},
consider the infimum

∡(v ,F ) = inf
u ∈ F\{0}

∡(v , u).

For a basis E of X and v ∈ E , we denote by Fn,v the subspace of X

generated by the vectors {
en(b) : b ∈ E \ {v}

}
.
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Corollary 9

Let X be a finite dimensional Hilbert space with dimension dimX ≥ 2

and assume that S = (Sn)n∈Z has a basis E of X satisfying

inf
n∈Z, v ∈E

∡(en(v),Fn,v ) > 0.

Then, E has S−bounded projections and so, for every 1 ≤ p < +∞, the

shift σS : ℓp(X ) → ℓp(X ) is linearly conjugate to the finite product∏
b∈E

Bω(b) :
(
ℓp(K)

)dimX →
(
ℓp(K)

)dimX
.
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Consequence 3

As previously mentioned, some dynamical properties of linear bounded

invertible operators may be conveyed to factors. We may strengthen such

results in the setting of Classification theorem II.

Let Q be one of these properties: mixing, shadowing or generalized

hyperbolicity. Then:

Corollary 10

Let X be a finite dimensional Banach space, S = (Sn)n∈Z be a sequence

of linear bounded invertible operators on X and E be a basis of X with

S−bounded projections. Then the shift σS : ℓp(X ) → ℓp(X ) has property

Q if and only if Bω(b) has property Q for all b ∈ E .
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Remark

It is easy to verify that the previous corollary fails for the shadowing

property in case X is infinite dimensional.

For instance, let X = ℓ2(R), E = {ej : j ∈ Z} be the canonical basis of X

and T : ℓ2(R) → ℓ2(R) be defined by

T (ej) =
(
1 +

1

2j

)
ej

for all j ∈ Z.

Then the shift operator σS : ℓp(X ) → ℓp(X ), determined by S = (Sn)n∈Z

with Sn = T for every n ∈ Z, does not have the shadowing property

according to Bernardes and Messaoudi criteria, although for all b ∈ E the

weighted shift Bω(b) : ℓp(R) → ℓp(R) has it.
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Consequence 4

Since generalized hyperbolic linear bounded invertible operators satisfy

the shadowing property; the shadowing property is preserved by factors; a

weighted backward shift on ℓp(K) has the shadowing property if and only

if it is generalized hyperbolic; and a finite product of generalized

hyperbolic operators is generalized hyperbolic, one has:

Corollary 11

Let X be a finite dimensional Banach space, S = (Sn)n∈Z be a sequence

of linear bounded invertible operators on X and E be a basis of X with

S−bounded projections. Then the shift σS : ℓp(X ) → ℓp(X ) is

generalized hyperbolic if and only if it has the shadowing property.
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Consequence 5

Applying Bernardes-Messaoudi characterization of the weighted backward

shifts with the shadowing property to the setting of the previous corollary,

and rewriting the ωn’s in terms of the Sn’s, we have an immediate criteria

for shadowing within the class of shift operators.
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Example

A shift operator σS may fail to satisfy the shadowing property even

though each of the operators Sn in the sequence S has that property, as

the next example illustrates.

Consider X = R2 and the Banach space

ℓ∞(R2) =
{
(xn, yn)n ∈ (R2)

Z
: sup

n∈Z
∥(xn, yn)∥ < +∞

}
.

Let T : R2 → R2 be the linear invertible operator given by

(x , y) ∈ R2 7→ T (x , y) =
(
2x ,

1

2
y
)
.
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The map T is hyperbolic, hence satisfies the shadowing property.

Consider now the shift operator σS where S = (Sn)n∈Z is defined by

Sn =

 T if n is odd

T−1 otherwise.

Then this shift operator does not have the shadowing property in view of

the aforementioned criteria.



1 2 3 4 5 6 7

6. Applications

To illustrate the scope of our results, let us discuss a few examples.
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Example 1

Consider a rotation matrix in X = R2 given by

Rθ =

(
cos (2πθ) − sin (2πθ)

sin (2πθ) cos (2πθ)

)

where θ ∈ ]0, 1[.

Let S = (Sn)n∈Z where Sn =
(
1/2
)
Rθn for all n ∈ Z and θn ∈ ]0, 1[.

Then any orthogonal basis of R2 is an orthogonal basis for S.
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Therefore σS : ℓp(R2) → ℓp(R2) is linearly conjugate to the product of

weighted backward shifts Bω × Bω, where ω = (ωn)n∈Z is given by

ωn =
1

2
∀ n ∈ Z.

Moreover, σS is hyperbolic (so it has the shadowing property and is

expansive).
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Example 2

Take d ∈ N, X = Rd and invertible diagonal matrices

Sn =


λn(1) 0 . . . 0

0 λn(2) . . . 0
...

...
. . . 0

0 0 . . . λn(d)

 .

Clearly, the canonical basis of Rd is an orthogonal basis for the sequence

S = (Sn)n∈Z. So the corresponding shift operator σS : ℓp(Rd) → ℓp(Rd)

is linearly conjugate to a finite product of weighted backward shifts.
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Moreover, σS has the shadowing property if and only if (λn(t))n∈Z

satisfies Bernardes-Messaoudi criteria, for every 1 ≤ t ≤ d .

Similarly, σS has the mixing property if and only if (λn(t))n∈Z satisfies

Grosse-Erdmann-Maguillot criteria.12

12K.-G Grosse-Erdmann, A. Peris Manguillot. Linear Chaos. Universitext, Springer,

2011
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We note that, conversely, a product of d weighted backward shifts, each

defined in ℓp(K), 1 ≤ p < +∞, is linearly conjugate to the shift operator

σS generated by the sequence (Sn)n∈Z of diagonal matrices with respect

to the canonical basis in Kd , whose entries are precisely the weights of

the factors.
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Example 3

Let X = R2 and consider

L =

(
2 1

1 1

)
.

The matrix L is not orthogonal, but is diagonalizable with eigenvalues

3±
√
5

2

and eigenvectors

E =
{(

1,

√
5− 1

2

)
,
(
1,−

√
5 + 1

2

)}
which are orthogonal and define L−invariant directions.
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Therefore, the shift σS : ℓp(R2) → ℓp(R2) has an orthogonal basis, so it

is linearly conjugate to the product of the weighted backward shifts

Bω × Bω̄, where ω = (ωn)n∈Z, ω̄ = (ω̄n)n∈Z,

ωn =
3 +

√
5

2
and ω̄n =

3−
√
5

2
∀ n ∈ Z.

Thus, σS is hyperbolic.
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Operators without an orthogonal basis

Definition 12
Let X be a finite dimensional Banach space. A sequence S = (Sn)n∈Z of

operators on X is said to be jointly diagonalizable if there is a linear

invertible operator L such that, for every n ∈ Z, there exists a diagonal

operator Dn satisfying

Sn = LDn L−1.
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From the information regarding sequences of diagonal matrices, one

deduces that:

Proposition 1

Let X be a Banach space with dimension 1 ≤ d < +∞. Suppose that the

sequence S = (Sn)n∈Z of operators on X is jointly diagonalizable. Then,

for 1 ≤ p < +∞, the shift σS : ℓp(X ) → ℓp(X ) is linearly conjugate to

the product of d weighted backward shifts, each one defined on ℓp(K).
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Example 4

Let X = R2 and consider the sequence S = (Sn)n∈Z of operators in X

such that Sn = L for every n ∈ Z, where

L =

(
2 3

1 2

)
.

The eigenvalues of L are λ = 2±
√
3 with eigenvectors (±

√
3, 1),

respectively.

As the eigenvectors are not orthogonal and the matrix L is hyperbolic,

the image by L of any two orthogonal vectors is not orthogonal.

Consequently, S = (Sn)n∈Z does not have an orthogonal basis.
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However, as (Sn)n∈Z is jointly diagonalizable, we can still conclude that

σS is linearly conjugate to the product of two weighted backward shifts.

Moreover, σS is hyperbolic.
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Example 5

Let X = R2 and let us go back to the hyperbolic matrix

L =

(
2 1

1 1

)
.

Let 0 < λ− < 1 < λ+ be the eigenvalues of L with eigenvectors v− and

v+, respectively, and R2 = E+ ⊕ E− be the orthogonal L−invariant

splitting given by the eigenspaces E+ and E− of L.
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We may choose sequences of bounded matrices S = (Sn)n∈Z inside a

small open neighborhood U of L in such a way that

• S0 = Id , S−n ∈ U and Sn ∈ U ∀ n ∈ N;

and

• there is a basis E which has S−bounded projections.

Therefore, the shift operator σS is linearly conjugate to the product of

two weighted backward shifts, which are hyperbolic.

In particular, σS has the shadowing property.
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Example 6

Combining hyperbolic and elliptic matrices we may construct examples of

shift operators linearly conjugate to a finite product of weighted

backward shifts, though some of these examples satisfy the shadowing

property while others do not.

For instance, consider the linear operators on R2 given by the matrices

R2πζ =

(
cos (2πζ) − sin (2πζ)

sin (2πζ) cos (2πζ)

)
, ζ ∈ R \Q

and

L =

(
2 0

0 1
2

)
.
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We may define sequences S = (Sn)n∈Z of operators on R2 where

S0 = Id and, for each n ∈ Z \ {0}, Sn is either R2πζ or L,

. . . L . . . L︸ ︷︷ ︸
n2

R2πζ . . .R2πζ︸ ︷︷ ︸
m1

L . . . L︸ ︷︷ ︸
n1

↓
Id L . . . L︸ ︷︷ ︸

n1

R2πζ . . .R2πζ︸ ︷︷ ︸
m1

L . . . L︸ ︷︷ ︸
n2

. . .

for suitable choices of sequences of positive integers (ni )i ∈N and

(mi )i ∈N, where ↓ marks the position zero, to ensure that there is a basis

E which has S−bounded projections.

So the shift operator σS is linearly conjugate to the product of two

weighted backward shifts.
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We may now change the frequency with which L occurs in the sequence

(Sn)n∈Z to study its impact on the properties of the shift operator σS .

We have proved that:

• Unbounded gaps: supi ∈N mi = +∞.

In this case, σS does not satisfy the shadowing property.

• Bounded gaps: supi ∈N mi < +∞.

In this case, σS has the shadowing property.
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Example 7

Let X = R2 endowed with the norm given by ∥(x , y)∥ = max {|x |, |y |}
and S = (Sn)n∈Z be the sequence

Sn = L =

(
1 1

0 1

)
∀ n ∈ Z.

Then σS : ℓp(R2) → ℓp(R2) is given by

σS
(
(xn, yn)n∈Z

)
=
(
xn+1 + yn+1, yn+1

)
n∈Z.
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More generally, for every (xn, yn)n∈Z ∈ ℓp(R2) and k ∈ Z,

σk
S
(
(xn, yn)n∈Z

)
=
(
xn+k + k yn+k , yn+k

)
n∈Z.

In particular, we deduce that σS has unbounded orbits, such as the orbit

of the vector v = (0, yn)n∈Z ∈ ℓp(R2) with yn = 0 for all n ∈ Z \ {0} and

y0 = 1, for which one has

lim
k →+∞

∥σk
S(v)∥p = +∞.
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Observe that, for every n ∈ N,

e−n(1, 0) =
Ln(1, 0)

∥Ln(1, 0)∥
= (1, 0)

e−n(0, 1) =
Ln(0, 1)

∥Ln(0, 1)∥
=

(n, 1)

n
=
(
1,

1

n

)
.

Hence, the angle between these two vectors goes to zero as n → +∞ and

∥∥Πe−n(0,1)

∥∥ ≥
∥Πe−n(0,1)

(
(0, 1)

)
∥

∥(0, 1)∥
=

∥∥Πe−n(0,1)

(
− n e−n(1, 0) + n e−n(0, 1))

∥∥
= n.

Consequently, the canonical basis E = {(1, 0), (0, 1)} does not have

S−bounded projections.
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In this case,

ωn

(
(1, 0)

)
= 1 ∀ n ∈ Z

and

ωn

(
(0, 1)

)
=



1 if n = 0, 1

n−1
n if n ≥ 2

|n|+1
|n| if n ≤ −1.
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The shift operator σS is linearly conjugate to a skew-product of two

backward weighted shifts:

FS : ℓp(R)× ℓp(R) → ℓp(R)× ℓp(R)

FS
(
(xn)n∈Z, (yn)n∈Z

)
=
(
Bω

(
(xn)n∈Z

)
+Bω

(
(yn)n∈Z), Bω

(
(yn)n∈Z

))
.

where ω =
(
ωn((1, 0))

)
n∈Z is the constant sequence equal to 1.
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However, the shift operator σS is not linearly conjugate to the product of

the two backward weighted shifts

B
ω
(
(1,0)
) × B

ω
(
(0,1)
)

because the orbits by this product are all bounded.

This shows that our result regarding sequences S = (Sn)n∈Z with a basis

E exhibiting S−bounded projections is sharp.
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Proof of Theorem 7

Fix 1 ≤ p < +∞ and let E = {b1, . . . , bd} be a basis of X with

S−bounded projections.

For each n ∈ Z, consider the basis En = {en(x) : x ∈ E} and, given

b ∈ E , take the linear map

Γb : ℓp(X ) → KZ

(xn)n∈Z 7→
(
Πen(b) (xn)

)
n∈Z.
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Γb is continuous.

Indeed, by the S−bounded projections assumption, there exists C > 0

such that

∥Γb
(
(xn)n∈Z

)
∥pp =

∑
n∈Z

∥Πen(b) (xn)∥
p ≤ C

∑
n∈Z

∥xn∥p = C ∥(xn)n∈Z)∥pp.

This estimate also proves that

Γb(ℓp(X )) ⊂ ℓp(K).
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The converse inclusion, ℓp(K) ⊂ Γb(ℓp(X )), is also true.

Indeed, given (tn)n∈Z ∈ ℓp(K), the vector
(
tnen(b)

)
n∈Z belongs to

ℓp(K) because the elements in En are normalized; and one has

Γb
((
tnen(b)

)
n∈Z

)
=
(
tn
)
n∈Z.
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Consider the map I : ℓp(X ) → (ℓp(K))d defined by

I
(
(xn)n∈Z

)
=

(
Γb1
(
(xn)n∈Z

)
, Γb2

(
(xn)n∈Z

)
, . . . , Γbd

(
(xn)n∈Z

))
n∈Z

=
((

Πen(b1)(xn)
)
n∈Z,

(
Πen(b2)(xn)

)
n∈Z, . . . ,

(
Πen(bd )(xn)

)
n∈Z

)
.
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By construction, I is linear, injective and continuous.

Moreover, I is surjective since, given(
(αn,1)n∈Z, (αn,2)n∈Z, . . . , (αn,d)n∈Z

)
∈ (ℓp(K))d

one has

I
(( d∑

i=1

αn,i en(bi )
)
n∈Z

)
=
(
(αn,1)n∈Z, (αn,2)n∈Z, . . . , (αn,d)n∈Z

)
and, due to the next lemma,

∑
n∈Z

∥∥∥ d∑
i=1

αn,i en(bi )
∥∥∥p ≤

∑
n∈Z

Kp

d∑
i=1

|αn,i |p = Kp

d∑
i=1

∑
n∈Z

|αn,i |p < +∞.
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Lemma 13
Let X be a finite dimensional Banach space, S = (Sn)n∈Z be a sequence

of linear invertible bounded operators on X and E be a basis of X with

S−bounded projections. Then there exists Kp > 0 such that, for every

(αb)b∈E ∈ KdimX and n ∈ Z, one has∥∥∥∑
b∈E

αb en(b)
∥∥∥p ≤ Kp

∑
b∈E

∥αb en(b)∥p = Kp

∑
b∈E

|αb|p.
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Therefore, I is an isomorphism.

Furthermore,

I ◦ σS =
(
Bω(b1) × · · · × Bω(bd )

)
◦ I

since, for every b ∈ E ,

Γb
(
(Sn+1(xn+1))n∈ Z

)
=

(
Πen(b) (Sn+1(xn+1))

)
n∈Z

=
(
Π 1

ωn+1(b)
Sn+1(en+1(b)) (Sn+1(xn+1))

)
n∈Z

= ωn+1(b) Πen+1(b)(xn+1)

= Bω(b)

(
Γb
(
(xn)n∈Z

))
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and

(I ◦ σS)
(
(xn)n∈Z

)
= I

((
Sn+1(xn+1)

)
n∈Z

)

=
(
Γb1
(
(Sn+1(xn+1))n∈ Z

)
, . . . , Γbd

(
(Sn+1(xn+1))n∈ Z

))
=
(
Bω(b1)

(
Γb1((xn)n∈Z)

)
, . . . , Bω(bd )

(
Γbd ((xn)n∈Z)

))
=
(
Bω(b1) × · · · × Bω(bd )

) (
I((xn)n∈ Z )

)
.

This finishes the proof of the theorem.
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The end.
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