Characterizing inverse sequences for which their inverse limits are homeomorphic

Matevž Črepnjak

Coauthor: Tina Sovič

University of Maribor, Slovenia

The 38th Summer Conference on Topology and its Applications July 2024

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Mioduszewski characterized inverse sequences of polyhedra for which their inverse limits are homeomorphic (J. Mioduszewski, Mappings of inverse limits, *Collog. Math.*, 10 (1963), 39-44.).

THEOREM 3. If $X = \lim_{n \to \infty} \{X_n, \pi_n^m\}$ and $Y = \lim_{n \to \infty} \{Y_n, \sigma_n^m\}$ are homeomorphic, then for every sequence $\{\varepsilon_n\}$ such that $\varepsilon_n > 0$ and $\lim_{n \to \infty} \varepsilon_n = 0$, there exists an infinite diagram

(5)
$$\begin{array}{cccc} X_{m_1} \leftarrow X_{m_2} \leftarrow \ldots \leftarrow X_{m_{2k-1}} \leftarrow X_{m_{2k}} \leftarrow \ldots \\ \downarrow & \uparrow & \downarrow & \uparrow \\ Y_{n_1} \leftarrow Y_{n_2} \leftarrow \ldots \leftarrow Y_{n_{2k-1}} \leftarrow Y_{n_{2k}} \leftarrow \ldots, \end{array}$$

where $\{m_k\}$ and $\{n_k\}$ are unbounded and non-decreasing sequences of positive integers, and every subdiagram of the form

is ε_{2k} -commutative in the cases (5'') and (5''') and ε_{2k-1} -commutative in the cases (5') and (5''').

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

THEOREM 4. Let $\{\varepsilon_n\}$, n = 1, 2, ..., be a sequence of positive numbers such that $\lim \varepsilon_n = 0$. The existence of an infinite diagram (4) having, with respect to this sequence, the properties required in Theorem 3 induces the existence of a homeomorphism f of X onto Y (the inverse of f is denoted by g) such that $\sigma_s^{n_{2k-1}}f_k\pi_{m_{2k-1}}\sigma_s f$ and $\pi_s^{m_{2k}}g_k\sigma_{n_{2k}}\sigma_s f$ for every s and $k, s \leq n_{2k-1}$ in the first case, and $s \leq m_{2k}$ in the second one.

THEOREM 4'. If for every pair of positive integers m and n, for every mapping $f_{mn}: X_m \to Y_n$ belonging to \mathscr{F} , for every $\varepsilon > 0$ and m' > m, there exists n' > n and a mapping $g_{n'm'}: Y_{n'} \to X_{m'}$ belonging to \mathscr{G} such that the diagram

$$\begin{array}{c} X_m \leftarrow X_m \\ \downarrow \qquad \uparrow \\ Y_n \leftarrow Y_{n'} \end{array}$$

is c-commutative, and the same is true after change X into Y, F into G etc., then there exists a homeomorphism between X and Y.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Mioduszewski's restrictions:

- inverse limits of (not necessarily connected) polyhedra and continuous surjective bonding functions,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- functions between coordinate spaces.

Possible generalizations:

- polyhedra \longleftrightarrow compact metric spaces,
- \uparrow , \downarrow \longleftrightarrow set-valued functions

Mioduszewski's restrictions:

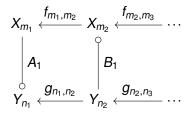
- inverse limits of (not necessarily connected) polyhedra and continuous surjective bonding functions,

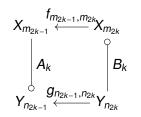
▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- functions between coordinate spaces.

Possible generalizations:

- polyhedra \longleftrightarrow compact metric spaces,
- \uparrow , \downarrow \longleftrightarrow set-valued functions





. . .

. . .

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Banič, Erceg, and Kennedy revisit Mioduszewski's results and give necessary and sufficient conditions for a compact metric space to be a continuous image of another one.

I. Banič, G. Erceg, J. Kennedy, Mappings theorem for inverse limits with setvalued bonding functions, Bull. Malays. Math. Sci. Soc., 45 (2022), 2905-2940.

▲□▶▲□▶▲□▶▲□▶ = のQの

Theorem (M. Č. & T. Sovič)

Let $\{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty}$ and $\{Y_{\ell}, g_{\ell}\}_{\ell=1}^{\infty}$ be inverse sequences of compact metric spaces and surjective continuous bonding functions. Then inverse limits $\lim_{k \to \infty} \{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty}$ and $\lim_{k \to \infty} \{Y_{\ell}, g_{\ell}\}_{\ell=1}^{\infty}$ are homeomorphic if and only if there are sequences (n_k) and (m_k) of positive integers and sequences (A_k) and (B_k) of upper semicontinuous functions with surjective graphs, satisfying (1), (2), (3), (4), (5), (6), (7) or (1), (2), (3), (4), (5), (6), (8).

- (1) $m_{k+1} > m_k$ and $n_{k+1} > n_k$ for each positive integer k,
- (2) $m_{2k-1} \ge n_{2k-1}$ and $m_{2k} \le n_{2k}$ for each positive integer k,

(3) $A_k : X_{m_{2k-1}} \multimap Y_{n_{2k-1}}$ and $B_k : Y_{n_{2k}} \multimap X_{m_{2k}}$ for each positive integer *k*,

Theorem (M. Č. & T. Sovič)

Let $\{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty}$ and $\{Y_{\ell}, g_{\ell}\}_{\ell=1}^{\infty}$ be inverse sequences of compact metric spaces and surjective continuous bonding functions. Then inverse limits $\lim_{k \to \infty} \{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty}$ and $\lim_{k \to \infty} \{Y_{\ell}, g_{\ell}\}_{\ell=1}^{\infty}$ are homeomorphic if and only if there are sequences (n_k) and (m_k) of positive integers and sequences (A_k) and (B_k) of upper semicontinuous functions with surjective graphs, satisfying (1), (2), (3), (4), (5), (6), (7) or (1), (2), (3), (4), (5), (6), (8).

(1) $m_{k+1} > m_k$ and $n_{k+1} > n_k$ for each positive integer k,

(2)
$$m_{2k-1} \ge n_{2k-1}$$
 and $m_{2k} \le n_{2k}$ for each positive integer k,

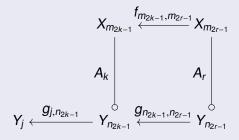
(3)
$$A_k : X_{m_{2k-1}} \multimap Y_{n_{2k-1}}$$
 and $B_k : Y_{n_{2k}} \multimap X_{m_{2k}}$ for each positive integer *k*,

Theorem

(4) for each positive integer k and for each $j \in \{1, 2, 3, ..., n_{2k-1}\}$,

$$g_{j,n_{2r-1}}(A_r(x)) \subseteq (g_{j,n_{2k-1}} \circ A_k \circ f_{m_{2k-1},m_{2r-1}})(x)$$

holds for each positive integer r > k and for each $x \in X_{m_{2r-1}}$,



900

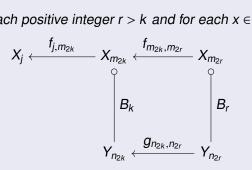
Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Theorem

(5) for each positive integer k and for each $j \in \{1, 2, 3, \dots, m_{2k}\}$,

$$f_{j,m_{2r}}(B_r(x)) \subseteq (f_{j,m_{2k}} \circ B_k \circ g_{n_{2k},n_{2r}})(x)$$

holds for each positive integer r > k and for each $x \in Y_{n_2}$,



Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Theorem

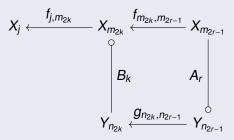
(6) for each positive integer j,
(a)
$$\lim_{k \to \infty} diam \left((g_{j, n_{2k-1}} \circ A_k \circ p_{m_{2k-1}})(\mathbf{x}) \right) = 0 \text{ for each } \mathbf{x} \in \varprojlim_{\ell} \{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty},$$
(b)
$$\lim_{k \to \infty} diam \left((f_{j, m_{2k}} \circ B_k \circ q_{n_{2k}})(\mathbf{y}) \right) = 0 \text{ for each } \mathbf{y} \in \varprojlim_{\ell} \{Y_{\ell}, g_{\ell}\}_{\ell=1}^{\infty},$$

・ロト・日本・日本・日本・日本・日本・日本・日本・日本

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Theorem

(7) (a) for each positive integer k and for each $j \in \{1, 2, 3, ..., m_{2k}\}$, $f_{j,m_{2r-1}}(x) \in (f_{j,m_{2k}} \circ B_k \circ g_{n_{2k},n_{2r-1}} \circ A_r)(x)$ holds for each positive integer r > k and for each $x \in X_{m_{2r-1}}$,



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Theorem

(7) (b) for each positive integer j and $\varepsilon > 0$ there exist positive integers K and R, such that

$$diam\left((f_{j,m_{2k}}\circ B_k\circ g_{n_{2k},n_{2r-1}}\circ A_r\circ p_{m_{2r-1}})(\boldsymbol{x})\right)<\varepsilon,$$

for each $k \ge K$, $r \ge R$, k < r, and each $\mathbf{x} \in \lim_{\ell \to \infty} \{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty}$,

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

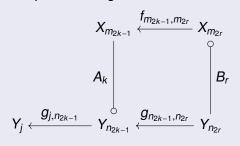
Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Theorem

(8) (a) for each positive integer k and for each $j \in \{1, 2, 3, \dots, n_{2k-1}\}$,

$$g_{j,n_{2r}}(x) \in (g_{j,n_{2k-1}} \circ A_k \circ f_{m_{2k-1},m_{2r}} \circ B_r)(x)$$

holds for each positive integer r > k and for each $x \in Y_{n_{2r}}$,



500

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Theorem

(8) (b) for each positive integer j and $\varepsilon > 0$ there exist positive integers K and R, such that

$$diam\left((g_{j,n_{2k-1}}\circ A_k\circ f_{m_{2k-1},m_{2r}}\circ B_r\circ q_{n_{2r}})(\mathbf{y})\right)<\varepsilon,$$

for each $k \ge K$, $r \ge R$, k < r, and each $\mathbf{y} \in \lim_{k \to \infty} \{Y_{\ell}, g_{\ell}\}_{\ell=1}^{\infty}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Example

Let P be the pseudo-arc and for each positive integer ℓ , let

- $X_{\ell} = [0, 1], Y_{\ell} = P$,

- $f_{\ell}: X_{\ell+1} \to X_{\ell}$ be any surjective function such that $\varprojlim \{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty}$ is a pseudo-arc, and

- $g_{\ell}: Y_{\ell+1} \rightarrow Y_{\ell}$ be the identity function on P.

Note that a continuous image of an arc is again an arc, but since the pseudo-arc contains no arcs, Banič, Erceg, and Kennedy show that for a positive $\varepsilon < \operatorname{diam}(P)$ there are no continuous functions A_k from $X_{m_{2k-1}}$ to $Y_{n_{2k-1}}$ such that the above diagram is ε -commutative. By previous theorem there are set-valued functions A_k from $X_{m_{2k-1}}$ to $Y_{n_{2k-1}}$ with all required properties.

Theorem

Let X_{ℓ} be a compact metric space for each positive integer ℓ and let \sim_1 be any equivalence relation on X_1 . Further, for each positive integer ℓ , let

(1) $f_{\ell}: X_{\ell+1} \rightarrow X_{\ell}$ be a continuous surjective function,

- (2) $\sim_{\ell+1}$ be an equivalence relation on $X_{\ell+1}$ such that for each $x, y \in X_{\ell+1}$ it holds that $x \sim_{\ell+1} y$ if and only if $f_{\ell}(x) = f_{\ell}(y)$,
- (3) $g_{\ell}: X_{\ell+1}/_{\sim_{\ell+1}} \to X_{\ell}/_{\sim_{\ell}}$ be defined by $g_{\ell}([x]_{\ell+1}) = [f_{\ell}(x)]_{\ell}$.
- (4) $\varrho_{\ell}: X_{\ell} \to X_{\ell/\sim_{\ell}}$ be the natural quotient map defined by $\varrho_{\ell}(x) = [x]_{\ell}$ for each $x \in X_{\ell}$.

Then the inverse limits $\varprojlim_{\ell=1}^{\infty} \{X_{\ell}, f_{\ell}\}_{\ell=1}^{\infty}$ and $\varprojlim_{\ell=1}^{\infty} \{X_{\ell}/_{\sim_{\ell}}, g_{\ell}\}_{\ell=1}^{\infty}$ are homeomorphic.

Corollary

Let (f_{ℓ}) be a sequence of continuous surjective functions from [0,1] to [0,1] such that $f_{\ell}(0) = f_{\ell}(1)$ for each positive integer ℓ . Then $\lim_{\ell \to 0} \{[0,1], f_{\ell}\}_{\ell=1}^{\infty}$ is a circle-like continuum.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Corollary

Let (f_{ℓ}) be a sequence of continuous surjective functions from [0,1] to [0,1] such that $f_{\ell}(0) = f_{\ell}(1)$ for each positive integer ℓ . Then $\lim_{\ell \to 0} \{[0,1], f_{\ell}\}_{\ell=1}^{\infty}$ is a circle-like continuum.

Example

$$f:[0,1] \to [0,1], f(x) = \begin{cases} 2x & ; x \in [0,\frac{1}{2}] \\ 2-2x & ; x \in [\frac{1}{2},1] \end{cases}$$

$$\begin{split} & \lim_{t \to 0} \{[0,1], f\}_{\ell=1}^{\infty} \approx \text{Brouwer-Janiszewski-Knaster continuum} \\ & \text{Since } f(0) = f(1), \lim_{t \to 0} \{[0,1], f\}_{\ell=1}^{\infty} \text{ is circle-like.} \end{split}$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Corollary

Let (f_{ℓ}) be a sequence of continuous surjective functions from [0,1] to [0,1] such that $f_{\ell}(0) = f_{\ell}(1)$ for each positive integer ℓ . Then $\lim_{\ell \to 0} \{[0,1], f_{\ell}\}_{\ell=1}^{\infty}$ is a circle-like continuum.

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Example

$$f:[0,1] \to [0,1], f(x) = \begin{cases} 2x & ; x \in [0,\frac{1}{2}] \\ 2-2x & ; x \in [\frac{1}{2},1] \end{cases}$$
$$\lim_{k \to \infty} \{[0,1],f\}_{\ell=1}^{\infty} \approx \text{Brouwer-Janiszewski-Knaster continuum}$$
Since $f(0) = f(1), \lim_{k \to \infty} [[0,1],f]_{\ell=1}^{\infty}$ is circle-like.

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Corollary

Let (f_{ℓ}) be a sequence of continuous surjective functions from [0,1] to [0,1] such that $f_{\ell}(0) = f_{\ell}(1)$ for each positive integer ℓ . Then $\lim_{\ell \to 0} \{[0,1], f_{\ell}\}_{\ell=1}^{\infty}$ is a circle-like continuum.

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Example

$$f:[0,1] \to [0,1], f(x) = \begin{cases} 2x & ; x \in [0,\frac{1}{2}] \\ 2-2x & ; x \in [\frac{1}{2},1] \end{cases}$$
$$\lim_{k \to \infty} [[0,1],f]_{\ell=1}^{\infty} \approx \text{Brouwer-Janiszewski-Knaster continuum} \\ \text{Since } f(0) = f(1), \lim_{k \to \infty} [[0,1],f]_{\ell=1}^{\infty} \text{ is circle-like.} \end{cases}$$

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Generalized inverse limits

Example

For each positive integer ℓ , let $F_{\ell} : [0,1] \multimap [0,1]$ be an upper semicontinuous function defined by $F_{\ell}(x) = [0,1]$ for each $x \in [0,1]$ and let $G_{\ell} : [0,1] \multimap [0,1]$ be an upper semicontinuous function defined by

$$G_{\ell}(x) = \begin{cases} [0,1] & ; & x = 0 \\ \{0\} & ; & x \in (0,1] \end{cases}$$

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 ● ④ ● ●

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Generalized inverse limits

Problem

Is it true that if generalized inverse sequences $\{X_{\ell}, F_{\ell}\}_{\ell=1}^{\infty}$ and $\{Y_{\ell}, G_{\ell}\}_{\ell=1}^{\infty}$ satisfy (1), (2), (3), (4), (5), (6), (7) or (1), (2), (3), (4), (5), (6), (8) in the theorem (where the bonding functions f_{ℓ} and g_{ℓ} are replaced by the set-valued functions F_{ℓ} and G_{ℓ} , respectively), then the generalized inverse limits $\lim_{\infty} \{X_{\ell}, F_{\ell}\}_{\ell=1}^{\infty}$ and $\lim_{\infty} \{Y_{\ell}, G_{\ell}\}_{\ell=1}^{\infty}$ are homeomorphic.

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

References

M. Č., T. Sovič, Characterizing inverse sequences for which their inverse limits are homeomorphic, Acta Math. Hungar., 172 (1) (2024), 42–61.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Matevž Črepnjak Coauthor: Tina Sovič University of Maribor, Slovenia

Thank you!

matevz.crepnjak@um.si

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ