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Let n ∈ N. For natural i ≤ n we denote ith opposite faces of the
n-dimensional unit cube In as

In
i,− = {z ∈ In : zi = 0} , In

i,+ = {z ∈ In : zi = 1} .

Theorem (Poincaré-Miranda)
For n ∈ N let f : In → Rn, f = (f1, . . . , fn) be a continuous function
such that fi [In

i,−] ⊂ (−∞, 0] and fi [In
i,+] ⊂ [0, ∞) for each natural i ≤ n.

Then, the preimage f−1 [{0}] is nonempty.
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We say that subset S ⊂ In connects ith opposite faces of In if S is
connected and S ∩ In

i,− ̸= ∅ ≠ S ∩ In
i,+.

Moreover we say that subset S ⊂ In connects some opposite faces of In if
S connects ith opposite faces of In for some i ≤ n.
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Theorem (W. Kulpa, L. Socha, M. Turzański)
For n ∈ N let f : In × I → Rn, f = (f1, . . . , fn) be a continuous function
such that fi [In

i,− × I] ⊂ (−∞, 0] and fi [In
i,+ × I] ⊂ [0, ∞) for each

natural i ≤ n. Then, there exists connected subset S ⊂ f−1 [{0}] such
that S ∩ (In × {0}) ̸= ∅ ≠ S ∩ (In × {1}).

It is called the parametric extension of the Poincaré-Miranda Theorem.

Reformulation
For n ≥ 2 let f : In → Rn−1, f = (f1, . . . , fn−1) be a continuous function
such that fi [In

i,−] ⊂ (−∞, p] and fi [In
i,+] ⊂ [p, ∞) for some p ∈ Rn−1 and

each natural i ≤ n − 1. Then, there exists subset S ⊂ f−1 [{p}] which
connects nth opposite faces of In.
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The proof bases on the similar idea as the n-dimensional generalization of
the Steinhaus Chessboard Theorem discovered by Tkacz and Turzański.

Case n = 2: Let some segments of the chessboard be mined.
Assume that king cannot go across the chessboard from the
left edge to the right one without meeting a mined square.
Then the rook can go from upper edge to the lower one
moving exclusively on mined segments.

General case: For n, k ∈ N let Kn
k be the standard decomposition of In

into kn cubes. Let F : Kn
k → {1, . . . , n} be an arbitrary function. Then

there exist p ∈ {1, . . . , n} and S ⊂ F −1 [{p}] such that
⋃

S connects
some opposite faces of In.

Michał Dybowski 12.07.2024 5 / 11



The proof bases on the similar idea as the n-dimensional generalization of
the Steinhaus Chessboard Theorem discovered by Tkacz and Turzański.

Case n = 2: Let some segments of the chessboard be mined.
Assume that king cannot go across the chessboard from the
left edge to the right one without meeting a mined square.
Then the rook can go from upper edge to the lower one
moving exclusively on mined segments.

General case: For n, k ∈ N let Kn
k be the standard decomposition of In

into kn cubes. Let F : Kn
k → {1, . . . , n} be an arbitrary function. Then

there exist p ∈ {1, . . . , n} and S ⊂ F −1 [{p}] such that
⋃

S connects
some opposite faces of In.

Michał Dybowski 12.07.2024 5 / 11



The proof bases on the similar idea as the n-dimensional generalization of
the Steinhaus Chessboard Theorem discovered by Tkacz and Turzański.

Case n = 2: Let some segments of the chessboard be mined.
Assume that king cannot go across the chessboard from the
left edge to the right one without meeting a mined square.
Then the rook can go from upper edge to the lower one
moving exclusively on mined segments.

General case: For n, k ∈ N let Kn
k be the standard decomposition of In

into kn cubes. Let F : Kn
k → {1, . . . , n} be an arbitrary function. Then

there exist p ∈ {1, . . . , n} and S ⊂ F −1 [{p}] such that
⋃

S connects
some opposite faces of In.

Michał Dybowski 12.07.2024 5 / 11



Parametric extension of the Poincaré-Miranda Theorem
For n ≥ 2 let f : In → Rn−1, f = (f1, . . . , fn−1) be a continuous function
such that fi [In

i,−] ⊂ (−∞, p] and fi [In
i,+] ⊂ [p, ∞) for some p ∈ Rn−1 and

each natural i ≤ n − 1. Then, there exists compact subset S ⊂ f−1 [{p}]
which connects nth opposite faces of In.

Theorem (D., Górka)
For n ∈ N let f : In → Rn−1 be a continuous function. Then, there exist a
point p ∈ Rn−1 and a compact subset S ⊂ f−1 [{p}] which connects some
opposite faces of the n-dimensional unit cube In.
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Theorem
The Brouwer Fixed Point Theorem is a (simple) consequence of the result.

Proof.
Let us suppose there exists a retraction r : In → ∂In i.e. r is continuous
and r|∂In is the identity function.

Let g : ∂In → Rn−1 be an arbitrary
continuous function such that

∣∣g−1 [{p}]
∣∣ ≤ 2 for every p ∈ Rn−1 and we

define f = g ◦ r : In → Rn−1. Since f is continuous, we can use the result
so there exist p ∈ Rn−1 and a compact subset S ⊂ f−1 [{p}] which
connects some opposite faces of In. Thus, in particular |S ∩ ∂In| ≥ 2, and
S ∩ ∂In ⊂ g−1 [{p}] since r is retraction. Then
S ∩ ∂In = g−1 [{p}] = {x0, x1} for some points x0 ̸= x1. Moreover
r [S] = {x0, x1} and then S =

(
r−1 [{x0}] ∩ S

)
∪

(
r−1 [{x1}] ∩ S

)
and it

violates the connectedness of S.
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The proof of the result consists of 3 steps.

S1 Solving the discrete formulation of the result.

Theorem
Let n ∈ N. There exists constant Cn > 0 such that the following property
holds:

Let k ∈ N and F : Kn
k → Zn−1 be a function such that

∥F (K1) − F (K2)∥∞ ≤ 1 if K1 ∩ K2 ̸= ∅. Then there exist an 1-connected
subset P ⊂ Zn−1 with |P | ≤ Cn and subset S ⊂ F −1 [P ] such that

⋃
S

connects some opposite faces of In.

The proof is based on the n-dimensional Steinhaus Chessboard
Theorem and the notion of clustered chromatic numbers which comes
from graph theory.
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S2 Solving the approximate problem.

For n ∈ N let f : In → Rn−1 be a continuous function.
Then, for every ε > 0 there exist pε ∈ Rn−1 and a compact
subset Sε ⊂ f−1 [{B (pε, ε)}] which connects some opposite
faces of the n-dimensional unit cube In.

S3 Applying the machinery of Hausdorff convergence to obtain the result
from its approximate version.
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Theorem
The n-dimensional Steinhaus Chessboard Theorem is a (simple)
consequence of the result.

Proof.
Let n, k ∈ N, n ≥ 2 and F : Kn

k → {1, . . . , n} be an arbitrary function.

For
i ≤ n − 1 let fi : In → R be an arbitrary continuous function such that
f−1

i [{0}] =
⋃

F −1 [{i}]. Let us define continuous function f : In → Rn−1

as f = (f1, f2, . . . , fn−1). Then, there exist p ∈ Rn−1 and a compact
subset S ⊂ f−1 [{p}] which connects ith opposite faces of In for some
i ≤ n.

We can easily see that S ⊂
⋃

F −1 [{j}] for some j ≤ n, and then for
S ′ =

{
K ∈ F −1 [{j}] : S ∩ K ̸= ∅

}
, set

⋃
S ′ connects ith opposite faces

of In since S does.
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}
, set

⋃
S ′ connects ith opposite faces

of In since S does.

Michał Dybowski 12.07.2024 10 / 11



References

M. Dybowski, P. Górka. Chessboard and level sets of continuous functions.
Preprint: https://arxiv.org/abs/2406.13774, 2024.

W. Kulpa, L. Socha, and M. Turzański. Parametric extension of the
Poincaré theorem. Acta Universitatis Carolinae. Mathematica et Physica,
41(2):39–46, 2000.

P. Tkacz, M. Turzański. An n-dimensional version of Steinhaus’
chessboard theorem. Topology and its Applications, 155(4):354–361, 2008.

Michał Dybowski 12.07.2024 11 / 11


