Construction of Hartman-Mycielski and separation axioms on semitopological groups.

Marcela López Gaytán

Universidad Autónoma Metropolitana - Iztapalapa, CDMX.

38th Summer Conference on Topology and its Applications 8-12 July 2024.

The construction of Hartman-Mycielski associates every topological group G with a pathwise connected and locally pathwise connected topological group G^{\bullet} and such that G can be embedded as a closed subgroup into G^{\bullet} . The existence of G^{\bullet} brings with it various advantages, including the study of the properties of G through G^{\bullet} . Accurately, this motivates us to extend the idea of such construction in groups with different topological structures, particularly in semitopological and paratopological groups.

Definition

Let (G, \cdot) be a group and τ a topology in G. Consider the following mappings:

Given $a \in G$, $\lambda_a : G \to G$; $\lambda_a(x) = ax$ $\rho_a : G \to G$; $\rho_a(x) = xa$ $m : G \times G \to G$; $m(x, y) = x \cdot y$ $In : G \to G$; $In(x) = x^{-1}$

- G is a semitopological group if the left and right translations, λ_a and ρ_a, are continuous.
- *G* is a paratopological group if the multiplication mapping *m* is continuous, when *G* × *G* is endowed with the product topology.
- A topological group G is a paratopological group G such that the inversion mapping In is continuous.

Topological		Paratopological		Semitopological
group	\Rightarrow	group	\Rightarrow	group
Semitopological		Paratopological		Topological
group	\Rightarrow	group	\Rightarrow	group

Proposition

Every semitopological group is a homogeneous space.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ 釣�(♡

Topological		Paratopological		Semitopological
group	\Rightarrow	group	\Rightarrow	group
Semitopological group	\$	Paratopological group	⇒	Topological group
Proposition				

Every semitopological group is a homogeneous space.

₹ 9Q@

코에 세 코에 ~~

Construction of Hartman-Mycielski on semitopological groups

Let (G, \cdot) be a semitopological group whose identity is denoted by *e*. We consider the following set:

 $G^{\bullet} = \{f \colon [0,1) \to G \colon f \text{ is a step function}\}.$

It means that G^{\bullet} is the set of all functions $f : J = [0, 1) \rightarrow G$ such that there exists a finite sequence of real numbers $0 = a_0 < a_1 < \cdots < a_n = 1$, where the function f is constant in every $[a_k, a_{k+1})$ for all $k = 0, 1, \dots, n-1$.

Marcela López Gaytán

5/20

Let (G, \cdot) be a semitopological group whose identity is denoted by *e*. We consider the following set:

 $G^{\bullet} = \{f \colon [0,1) \to G \colon f \text{ is a step function}\}.$

It means that G^{\bullet} is the set of all functions $f: J = [0, 1) \rightarrow G$ such that there exists a finite sequence of real numbers $0 = a_0 < a_1 < \cdots < a_n = 1$, where the function f is constant in every $[a_k, a_{k+1})$ for all k = 0, 1, ..., n - 1.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

The set G^{\bullet} is a group with the binary operation * defined as: $(f * g)(r) = f(r) \cdot g(r)$ for all $r \in J$ and for any functions f and gin G^{\bullet} . The identity in G^{\bullet} is the constant function $e^{\bullet}(r) = e$, for all $r \in J$, and for each function f in G^{\bullet} its inverse is defined by $f^{-1}(r) = (f(r))^{-1}$.

Construction of Hartman-Mycielski on semitopological groups -Topology in G*

For every neighborhood V of the identity e in G and $\varepsilon > 0$, we can define the subset $O(V, \varepsilon)$ in G^{\bullet} as follows:

$$O(V,\varepsilon) = \{ f \in G^{\bullet} \mid \mu(\{ r \in J \mid f(r) \notin V \}) < \varepsilon \},\$$

where μ is the Lebesgue measure on J.

Proposition

The family of all subsets $O(V, \varepsilon)$, where V is a neighborhood of the identity e in G and ε is a positive number, forms a local base in the identity e^{\bullet} in G^{\bullet} making G^{\bullet} a semitopological group.

Construction of Hartman-Mycielski on semitopological groups -Topology in G*

For every neighborhood V of the identity e in G and $\varepsilon > 0$, we can define the subset $O(V, \varepsilon)$ in G^{\bullet} as follows:

$$O(V,\varepsilon) = \left\{ f \in G^{\bullet} \mid \mu(\{r \in J \mid f(r) \notin V\}) < \varepsilon \right\},\$$

where μ is the Lebesgue measure on J.

Proposition

The family of all subsets $O(V, \varepsilon)$, where V is a neighborhood of the identity e in G and ε is a positive number, forms a local base in the identity e^{\bullet} in G^{\bullet} making G^{\bullet} a semitopological group.

Every **topological group** G is topologically isomorphic to a closed subgroup of a topological group of a pathwise connected and locally pathwise connected topological group G^{\bullet} .

Proposition

The semitopological group *G*[•] is pathwise connected and locally pathwise connected.

Proposition

Given a (Hausdorff) semitopological group G, then G can be embedded as a (closed) subgroup of the semitopological group G^{\bullet} .

The latter fact is false for T_1 semitopological groups.

・ 同 ト ・ ヨ ト ・ ヨ ト

Every **topological group** G is topologically isomorphic to a closed subgroup of a topological group of a pathwise connected and locally pathwise connected topological group G^{\bullet} .

Proposition

The semitopological group G^{\bullet} is pathwise connected and locally pathwise connected.

Proposition

Given a (Hausdorff) semitopological group G, then G can be embedded as a (closed) subgroup of the semitopological group G^{\bullet} .

The latter fact is false for T_1 semitopological groups.

・ 同 ト ・ ヨ ト ・ ヨ ト

Every **topological group** G is topologically isomorphic to a closed subgroup of a topological group of a pathwise connected and locally pathwise connected topological group G^{\bullet} .

Proposition

The semitopological group G^{\bullet} is pathwise connected and locally pathwise connected.

Proposition

Given a (Hausdorff) semitopological group G, then G can be embedded as a (closed) subgroup of the semitopological group G^{\bullet} .

The latter fact is false for T_1 semitopological groups.

通 と く ヨ と く ヨ と

Example

Let \mathbb{Z} be the additive group of integer numbers. We consider the topology τ on \mathbb{Z} whose base consists of the following subsets:

 $\{\{k\} \cup [n,\infty) \colon k, n \in \mathbb{Z}, \ k < n\}.$

The paratopological group (\mathbb{Z}, τ) is T_1 , but it is not Hausdorff. We claim that the embedding between \mathbb{Z} and \mathbb{Z}^{\bullet} is not closed. The embedding from \mathbb{Z} into \mathbb{Z}^{\bullet} is defined as follows:

 $i: \mathbb{Z} \to \mathbb{Z}^{\bullet}$ and $i(x) = x^{\bullet}$,

where $x^{\bullet} : [0,1) \to \mathbb{Z}$ and $x^{\bullet}(r) = x$ for every $r \in [0,1)$. It is shown that $i[\mathbb{Z}]$ is not a closed subgroup of \mathbb{Z}^{\bullet} . For this, it is enough to analyze the complement of $i[\mathbb{Z}]$ and verify that it is not open in \mathbb{Z}^{\bullet} . Is the converse satisfied?.

Proposition

Let *G* be a semitopological group. Suppose that $i(G) \subset G^{\bullet}$ is closed in G^{\bullet} then *G* is Hausdorff.

Theorem

Let *G* be a semitopological group. Then *G* is Hausdorff if and only if the embedding $i: G \to i(G) \subset G^{\bullet}$ is closed.

★ E → ★ E →

Is the converse satisfied?.

Proposition

Let *G* be a semitopological group. Suppose that $i(G) \subset G^{\bullet}$ is closed in G^{\bullet} then *G* is Hausdorff.

Theorem

Let *G* be a semitopological group. Then *G* is Hausdorff if and only if the embedding $i: G \to i(G) \subset G^{\bullet}$ is closed.

A E > A E >

We are interested in the following properties:

Separation axioms

- T₀, T₁, Hausdorff,
- Urysohn, semiregularity, regularity,
- functionally Hausdorff, completely regular, Tychonoff.
- Symmetry-like properties
 - Almost topological groups,
 - SP-group,
 - 2-oscillating.
- Cardinal functions
 - Hausdorff number,
 - Symmetry number,
 - Index of regularity,
 - ω-narrowness.

A E
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

We are interested in the following properties:

Separation axioms

- T₀, T₁, Hausdorff,
- Urysohn, semiregularity, regularity,
- functionally Hausdorff, completely regular, Tychonoff.

Symmetry-like properties

- Almost topological groups,
- SP-group,
- 2-oscillating.

Cardinal functions

- Hausdorff number,
- Symmetry number,
- Index of regularity,
- ω-narrowness.

三 🕨

Some examples show that in paratopological groups none of the following implications hold:

```
T_0 \Rightarrow T_1 \Rightarrow T_2 \Rightarrow T_3.
```

In paratopological groups:

 $Regular \Rightarrow Tychonoff$

 $semiregular \Rightarrow regular$

In semitopological groups

It is unknown $Regular \Rightarrow Tychonoff$

 $semiregular \not\Rightarrow regular$

▲ Ξ ▶ ▲ Ξ ▶ Ξ • 𝒴 𝒫 𝔅 𝔅

Separation axioms

Let G be a semitopological group and $\mathcal{N}(e)$ a local base at the identity e in G. Then we have the following:

• G is T_0 if and only if :

$$\bigcap \{V \cap V^{-1} \colon V \in \mathcal{N}(e)\} = \{e\}.$$

• G is T_1 if and only if :

$$\bigcap_{V \in \mathcal{N}(e)} V = \{e\}.$$

• G is Hausdorff if and only if :

$$\bigcap_{V \in \mathcal{N}(e)} VV^{-1} = \{e\}.$$

Proposition

Let *G* be a semitopological group. Then G^{\bullet} is Hausdorff $(T_0 \text{ or } T_1)$ if and only if *G* is Hausdorff $(T_0 \text{ or } T_1)$.

Marcela López Gaytán

na na

Proposition

Let G be a semitopological group. Then G^{\bullet} is Urysohn (semiregular or regular) if and only if G is Urysohn (semiregular or regular).

Lemma

Let *A* and *B* be subsets of a semitopological group *G*. Then for any positive numbers ε and δ , it is true that:

$$O(A,\varepsilon) * O(B,\delta) \subset O(AB,\varepsilon+\delta).$$

Lemma

Let *G* be a semitopological group, *V* a subset of *G* and $\varepsilon > 0$. For every $0 < \delta < \varepsilon$, it follows that $\overline{O(V, \delta)} \subset O(\overline{V}, \varepsilon)$.

э

Functionally Hausdorff

Paratopological case

Definition

A semitopological group G is Functionally Hausdorff if for any element $x \in G$ different of the identity e there exists a continuous function $f: G \to [0,1]$ such that f(x) = 1 and f(e) = 0.

For paratopological groups, the following theorem holds immediately.

Theorem

Let *G* be a functionally Hausdorff paratopological group. Then G^{\bullet} is also a functionally Hausdorff paratopological group.

Functionally Hausdorff

Paratopological case

Definition

A semitopological group G is Functionally Hausdorff if for any element $x \in G$ different of the identity e there exists a continuous function $f: G \to [0,1]$ such that f(x) = 1 and f(e) = 0.

For paratopological groups, the following theorem holds immediately.

Theorem

Let *G* be a functionally Hausdorff paratopological group. Then G^{\bullet} is also a functionally Hausdorff paratopological group.

 $\begin{array}{cccc} G & G & G^{\bullet} & G^{\bullet} \\ \hline Functionally & \longleftrightarrow & Hausdorff & \Leftrightarrow & Hausdorff & & Functionally \\ Hausdorff & & & Hausdorff \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$

Functionally Hausdorff

Semitopological case

Theorem

Let *d* be a bounded pseudometric on a semitopological group *G*. For any $f, g \in G^{\bullet}$ consider the real-valued function d^{\bullet} on $G^{\bullet} \times G^{\bullet}$ defined by:

$$d^{\bullet}(f,g) = \sum_{k=0}^{n-1} (c_{k+1} - c_k) d(x_k, y_k),$$

where the numbers c_0, \ldots, c_n form a partition of both functions simultaneously and x_k, y_k are the values that f, g takes, respectively, in $[c_k, c_{k+1})$ for each $k = 0, \ldots, n-1$. Then d^{\bullet} is a continuous bounded pseudometric on G^{\bullet} . Moreover, the number $d^{\bullet}(f, g)$ does not depend on the choice of the partition.

Theorem

Let *G* be a functionally Hausdorff semitopological group. Then G^{\bullet} is also a functionally Hausdorff semitopological group.

Paratopological case is immediate.

Theorem

Let G be a completely regular paratopological group. Then G^{\bullet} is also a completely regular paratopological group.

For semitopological case, we use the following:

Theorem

Let *G* be a completely regular semitopological group. Consider an admissible uniformity \mathcal{U} on *G* defined by a family \mathcal{D} of continuous bounded pseudometrics on *G*. Given $f \in G^{\bullet}$ and a neighbourhood $O(V, \varepsilon)$ of the identity e^{\bullet} , there exist $d \in \mathcal{D}$ and a number $\delta > 0$ such that $\{g \in G^{\bullet} : d^{\bullet}(f, g) < \delta\} \subset fO(V, \varepsilon)$.

- < ≣ → <

Paratopological case is immediate.

Theorem

Let G be a completely regular paratopological group. Then G^{\bullet} is also a completely regular paratopological group.

For semitopological case, we use the following:

Theorem

Let *G* be a completely regular semitopological group. Consider an admissible uniformity \mathcal{U} on *G* defined by a family \mathcal{D} of continuous bounded pseudometrics on *G*. Given $f \in G^{\bullet}$ and a neighbourhood $O(V, \varepsilon)$ of the identity e^{\bullet} , there exist $d \in \mathcal{D}$ and a number $\delta > 0$ such that $\{g \in G^{\bullet} : d^{\bullet}(f, g) < \delta\} \subset fO(V, \varepsilon)$.

- < ≣ → <

Let G be a completely regular semitopological group. Then G^{\bullet} is also a completely regular semitopological group.

Corollary

Let *G* be a Tychonoff semitopological group. Then G^{\bullet} is also a Tychonoff semitopological group.

→ Ξ → < Ξ →</p>

References

- A.V. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press and World Sci., Hackensack, NJ, 2008.
- T. Banakh, A. Ravsky, Each regular paratopological group is completely regular, Proceedings of the American Mathematical Society, 2015.
- S. Hartman, J. Mycielski, On embeddings of topological groups into connected topological groups, Colloq. Math. 5 (1958) 167–169.
- O. V. Ravsky, Paratopological groups I, Mat. Stud. 16 (2001), no. 1, 37–48.
- O. V. Ravsky, Paratopological groups II, Mat. Stud. 17 (2002), no. 1, 93–101.
- M. Tkachenko, Embedding paratopological groups into topological products, Topology Appl. 156 (2009), no. 7, 1298–1305.
- M. Tkachenko, Paratopological and semitopological groups vs topological groups, Recent Progress in Topology III, Atlantis Press, 2014, Chapter 20, pp. 825–882.

Thank you!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○