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Motivation

The construction of Hartman-Mycielski associates every
topological group G with a pathwise connected and locally
pathwise connected topological group G• and such that G can
be embedded as a closed subgroup into G•. The existence of
G• brings with it various advantages, including the study of the
properties of G through G•. Accurately, this motivates us to
extend the idea of such construction in groups with different
topological structures, particularly in semitopological and
paratopological groups.
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Preliminaries

Definition
Let (G, ·) be a group and τ a topology in G. Consider the
following mappings:

Given a ∈ G, λa : G→ G; λa(x) = ax

ρa : G→ G; ρa(x) = xa

m : G×G→ G; m(x, y) = x · y

In : G→ G; In(x) = x−1

G is a semitopological group if the left and right translations, λa and ρa,
are continuous.

G is a paratopological group if the multiplication mapping m is
continuous, when G×G is endowed with the product topology.

A topological group G is a paratopological group G such that the
inversion mapping In is continuous.
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Topological Paratopological Semitopological
group ⇒ group ⇒ group

Semitopological Paratopological Topological
group ; group ; group

Proposition
Every semitopological group is a homogeneous space.
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Construction of Hartman-Mycielski on semitopological groups

Let (G, ·) be a semitopological group whose identity is denoted
by e. We consider the following set:

G• = {f : [0, 1)→ G : f is a step function}.

It means that G• is the set of all functions f : J = [0, 1)→ G
such that there exists a finite sequence of real numbers
0 = a0 < a1 < · · · < an = 1, where the function f is constant in
every [ak, ak+1) for all k = 0, 1, ..., n− 1.
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Construction of Hartman-Mycielski on semitopological groups

The set G• is a group with the binary operation ∗ defined as:
(f ∗ g)(r) = f(r) · g(r) for all r ∈ J and for any functions f and g
in G•. The identity in G• is the constant function e•(r) = e, for
all r ∈ J , and for each function f in G• its inverse is defined by
f−1(r) = (f(r))−1.
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Construction of Hartman-Mycielski on semitopological groups
-Topology in G•

For every neighborhood V of the identity e in G and ε > 0, we
can define the subset O(V, ε) in G• as follows:

O(V, ε) = {f ∈ G• | µ({r ∈ J | f(r) /∈ V }) < ε} ,

where µ is the Lebesgue measure on J .

Proposition

The family of all subsets O(V, ε), where V is a neighborhood of
the identity e in G and ε is a positive number, forms a local base
in the identity e• in G• making G• a semitopological group.
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Important properties

Theorem
Every topological group G is topologically isomorphic to a
closed subgroup of a topological group of a pathwise connected
and locally pathwise connected topological group G•.

Proposition
The semitopological group G• is pathwise connected and
locally pathwise connected.

Proposition
Given a (Hausdorff) semitopological group G, then G can be
embedded as a (closed) subgroup of the semitopological group
G•.

The latter fact is false for T1 semitopological groups.
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Example
Let Z be the additive group of integer numbers. We consider the
topology τ on Z whose base consists of the following subsets:

{{k} ∪ [n,∞) : k, n ∈ Z, k < n}.

The paratopological group (Z, τ) is T1, but it is not Hausdorff.
We claim that the embedding between Z and Z• is not closed.
The embedding from Z into Z• is defined as follows:

i : Z→ Z• and i(x) = x•,

where x• : [0, 1)→ Z and x•(r) = x for every r ∈ [0, 1).
It is shown that i[Z] is not a closed subgroup of Z•. For this, it is
enough to analyze the complement of i[Z] and verify that it is not
open in Z•.
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Is the converse satisfied?.

Proposition

Let G be a semitopological group. Suppose that i(G) ⊂ G• is
closed in G• then G is Hausdorff.

Theorem
Let G be a semitopological group. Then G is Hausdorff if and
only if the embedding i : G→ i(G) ⊂ G• is closed.
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Interaction of properties between G and G•

We are interested in the following properties:
Separation axioms

T0, T1, Hausdorff,
Urysohn, semiregularity, regularity,
functionally Hausdorff, completely regular, Tychonoff.

Symmetry-like properties
Almost topological groups,
SP-group,
2-oscillating.

Cardinal functions
Hausdorff number,
Symmetry number,
Index of regularity,
ω-narrowness.
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Separation axioms
Motivation

Some examples show that in paratopological groups none of
the following implications hold:

T0 ; T1 ; T2 ; T3.

In paratopological groups:

Regular ⇒ Tychonoff

semiregular ⇒ regular

In semitopological groups

It is unknown Regular ⇒ Tychonoff

semiregular ; regular
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Separation axioms
Let G be a semitopological group and N (e) a local base at the
identity e in G. Then we have the following:

G is T0 if and only if :⋂
{V ∩ V −1 : V ∈ N (e)} = {e}.

G is T1 if and only if : ⋂
V ∈N (e)

V = {e}.

G is Hausdorff if and only if :⋂
V ∈N (e)

V V −1 = {e}.

Proposition

Let G be a semitopological group. Then G• is Hausdorff (T0 or T1) if
and only if G is Hausdorff (T0 or T1).
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Separation axioms

Proposition
Let G be a semitopological group. Then G• is Urysohn
(semiregular or regular) if and only if G is Urysohn (semiregular
or regular).

Lemma

Let A and B be subsets of a semitopological group G. Then for
any positive numbers ε and δ, it is true that:

O(A, ε) ∗O(B, δ) ⊂ O(AB, ε+ δ).

Lemma

Let G be a semitopological group, V a subset of G and ε > 0.
For every 0 < δ < ε, it follows that O(V, δ) ⊂ O(V , ε).
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Functionally Hausdorff
Paratopological case

Definition
A semitopological group G is Functionally Hausdorff if for any
element x ∈ G different of the identity e there exists a
continuous function f : G→ [0, 1] such that f(x) = 1 and
f(e) = 0.

For paratopological groups, the following theorem holds
immediately.

Theorem
Let G be a functionally Hausdorff paratopological group. Then
G• is also a functionally Hausdorff paratopological group.

G G G• G•

Functionally ⇐⇒ Hausdorff ⇐⇒ Hausdorff ⇐⇒ Functionally
Hausdorff Hausdorff
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Functionally Hausdorff
Semitopological case

Theorem

Let d be a bounded pseudometric on a semitopological group G. For
any f, g ∈ G• consider the real-valued function d• on G• ×G• defined
by:

d•(f, g) =

n−1∑
k=0

(ck+1 − ck)d(xk, yk),

where the numbers c0, . . . , cn form a partition of both functions
simultaneously and xk, yk are the values that f, g takes, respectively,
in [ck, ck+1) for each k = 0, . . . , n− 1. Then d• is a continuous
bounded pseudometric on G•. Moreover, the number d•(f, g) does
not depend on the choice of the partition.

Theorem
Let G be a functionally Hausdorff semitopological group. Then
G• is also a functionally Hausdorff semitopological group.
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Separation axioms
Completely regular

Paratopological case is immediate.

Theorem
Let G be a completely regular paratopological group. Then G•

is also a completely regular paratopological group.

For semitopological case, we use the following:

Theorem

Let G be a completely regular semitopological group. Consider
an admissible uniformity U on G defined by a family D of
continuous bounded pseudometrics on G. Given f ∈ G• and a
neighbourhood O(V, ε) of the identity e•, there exist d ∈ D and
a number δ > 0 such that {g ∈ G• : d•(f, g) < δ} ⊂ fO(V, ε).
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Separation axioms
Completely regular

Theorem
Let G be a completely regular semitopological group. Then G•

is also a completely regular semitopological group.

Corollary
Let G be a Tychonoff semitopological group. Then G• is also a
Tychonoff semitopological group.
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Thank you!
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