Summer Conference on Topology and its Applications.

Remotely sequential spaces

Michael Hrušák joint with A. Shibakov

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México michael@matmor.unam.mx

> Coimbra July 24

Definitions

A topological space X is

- compactly generated (a k-space) (Hurewicz 1948) if A ⊆ X is closed if and only if A ∩ K is compact for every K ⊆ X compact.
- sequential (Franklin 1965) if $A \subseteq X$ is not closed then there is $x \notin A$ such that $x = \lim x_n$ for some $\{x_n : n \in \omega\} \subseteq A$.
- Fréchet (Arkhangel'skii 1963) if whenever x ∈ Ā then x = lim x_n for some {x_n : n ∈ ω} ⊆ A.
- remotely sequential if $A \subseteq X$ is not closed then there is some $\{x_n : n \in \omega\} \subseteq A \ (x_n \neq x_m)$ convergent in X.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definitions

A topological space X is

- compactly generated (a k-space) (Hurewicz 1948) if A ⊆ X is closed if and only if A ∩ K is compact for every K ⊆ X compact.
- sequential (Franklin 1965) if $A \subseteq X$ is not closed then there is $x \notin A$ such that $x = \lim x_n$ for some $\{x_n : n \in \omega\} \subseteq A$.
- Fréchet (Arkhangel'skii 1963) if whenever x ∈ Ā then x = lim x_n for some {x_n : n ∈ ω} ⊆ A.
- remotely sequential if $A \subseteq X$ is not closed then there is some $\{x_n : n \in \omega\} \subseteq A \ (x_n \neq x_m)$ convergent in X.

Definitions

A topological space X is

- compactly generated (a k-space) (Hurewicz 1948) if A ⊆ X is closed if and only if A ∩ K is compact for every K ⊆ X compact.
- sequential (Franklin 1965) if $A \subseteq X$ is not closed then there is $x \notin A$ such that $x = \lim x_n$ for some $\{x_n : n \in \omega\} \subseteq A$.
- Fréchet (Arkhangel'skii 1963) if whenever x ∈ Ā then x = lim x_n for some {x_n : n ∈ ω} ⊆ A.
- remotely sequential if $A \subseteq X$ is not closed then there is some $\{x_n : n \in \omega\} \subseteq A \ (x_n \neq x_m)$ convergent in X.

Fréchet and sequential groups

- A large number of "pathological" consistent examples.
- (H.-Ramos García 2014) It is consistent with ZFC that every separable Fréchet group is metrizable.
- (H.-Shibakov 2022) It is consistent with ZFC that every countable sequential group is either metrizable or k_{ω} .

伺 ト イヨト イヨト

- A topological space X is k_{ω} if there is a countable family \mathcal{K} of compact subsets of X such that a set U is open if and only if its intersection with every $K \in \mathcal{K}$ is relatively open in K.
- Countable k_{ω} groups are definable objects, they have $F_{\sigma\delta}$ topologies,
- Countable k_ω groups are completely classified by their compact scatteredness rank defined as the supremum of the Cantor-Bendixson index of their compact subspaces by a theorem of Zelenyuk:

Theorem (Zelenyuk 1995)

Countable k_{ω} groups of the same compact scatteredness rank are homeomorphic.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

k_{ω} -groups- continued

Theorem (Zelenyuk 1995)

Countable k_{ω} groups of the same compact scatteredness rank are homeomorphic.

• $\alpha < \omega_1$ let \mathcal{K}_{α} be a fixed countable family of compact subsets of the rationals \mathbb{Q} closed under translations, inverse and algebraic sums such that $\omega^{\alpha} = \sup\{\operatorname{rank}_{CB}(\mathcal{K}) : \mathcal{K} \in \mathcal{K}_{\alpha}\}$, and let

 $\tau_{\alpha} = \{ U \subseteq \mathbb{Q} : \ \forall K \in \mathcal{K}_{\alpha} : U \cap K \text{ is open in } K \}.$

- τ_0 is the discrete topology on \mathbb{Q} , so $\mathbb{Q}_0 = (\mathbb{Q}, \tau_0)$
- τ_{α} is a k_{ω} sequential group topology on \mathbb{Q} and $\mathbb{Q}_{\alpha} = (\mathbb{Q}, \tau_{\alpha})$
- \mathbb{Q} is determined by taking into account *all* of its compact subsets, so it makes sense to denote it as \mathbb{Q}_{ω_1}

Bounded topology on ideals

Countable sequential groups - continued

Theorem (H.-Shibakov 2022)

Assuming IIA, every countable sequential group is either metrizable or k_{ω} .

Corollary

Assuming IIA, for every infinite countable sequential group \mathbb{G} there is exactly one $\alpha \leq \omega_1$ such that \mathbb{G} is homeomorphic to \mathbb{Q}_{α} .

く 同 と く ヨ と く ヨ と

Dream conjecture

Conjecture (H.-Shibakov)

Is it consistent that every countable sequential group

- has a dense set without non-trivial convergent sequences,
- is metrizable, or
- \bigcirc is k_{ω} .

< 同 > < 三 > < 三 >

Sequential coreflection in groups

- Given a topological space (X, τ) its sequential coreflection (X, [τ]) is the strongest topology with the same convergent sequences.
- If (\mathbb{G}, τ) is a topological group and $(\mathbb{G}^2, [\tau]^2)$ is sequential then $[\tau]$ is a group topology.
- (Banakh-Zdomskyy 2004) If (G, [τ]) contains a copy of both the sequential fan and the convergent sequence of discrete sets then (G, τ) is not remotely sequential.

Remotely sequential non-sequential spaces and groups

- There is a topology on the ordinal $\omega^{\omega} + 1$ which is remotely sequential and coincides with the order topology on all proper initial segments call this space X.
- The free boolean group over X is a remotely sequential non-sequential group with a k_{ω} -sequential coreflection.

伺 ト イヨト イヨト

Dream conjecture-revised

Conjecture (H.-Shibakov)

Is it consistent that every countable sequential group (\mathbb{G}, τ) either

- has a dense set without non-trivial convergent sequences,
- is metrizable, or
- 3 ($\mathbb{G}, [\tau]$) is k_{ω} .

We have been able to confirm the conjecture for definable spaces.

< 同 > < 三 > < 三 >

Invariant Ideal Axiom

- IIA : For every countable groomed topological group \mathbb{G} and every tame, invariant, weakly closed ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{G})$ one of the following holds:
 - there is a countable S ⊆ I such that for every infinite sequence C convergent in G there is an I ∈ S such that C ∩ I is infinite, (= countable sequence capturing)
 - **2** there is a countable $\mathcal{H} \subseteq \mathcal{I}^+$ such that for every non-empty open $U \subseteq \mathbb{G}$ there is an $H \in \mathcal{H}$ such that $H \setminus U \in \mathcal{I}$ (= countable almost π -network.).

Open problems

- Is it consistent (follows from IIA) that every countable group is either metrizable, has k_ω sequential coreflection or contains a dense set without a convergent subsequence?
- Is there (in ZFC) a Fréchet group whose square is not Fréchet?
- Is there a sequential group whose square is not sequential?

Open problems

- Is it consistent (follows from IIA) that every countable group is either metrizable, has k_ω sequential coreflection or contains a dense set without a convergent subsequence?
- Is there (in ZFC) a Fréchet group whose square is not Fréchet?
- Is there a sequential group whose square is not sequential?

< 回 > < 三 > < 三 >

Open problems

- Is it consistent (follows from IIA) that every countable group is either metrizable, has k_ω sequential coreflection or contains a dense set without a convergent subsequence?
- Is there (in ZFC) a Fréchet group whose square is not Fréchet?
- Is there a sequential group whose square is not sequential?

< 同 > < 三 > < 三 >

That's all!

Thank you for your attention!

M. Hrušák Remotely sequential spaces

・ 同 ト ・ ヨ ト ・ ヨ ト