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Bounded topology on ideals

Definitions

A topological space X is

compactly generated (a k-space ) (Hurewicz 1948) if A ⊆ X is
closed if and only if A ∩ K is compact for every K ⊆ X compact.

sequential (Franklin 1965) if A ⊆ X is not closed then there is x ̸∈ A
such that x = lim xn for some {xn : n ∈ ω} ⊆ A.

Fréchet (Arkhangel’skii 1963) if whenever x ∈ Ā then x = lim xn for
some {xn : n ∈ ω} ⊆ A.

remotely sequential if A ⊆ X is not closed then there is some
{xn : n ∈ ω} ⊆ A (xn ̸= xm) convergent in X .
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Fréchet and sequential groups

A large number of ”pathological” consistent examples.

(H.-Ramos Garćıa 2014) It is consistent with ZFC that every
separable Fréchet group is metrizable.

(H.-Shibakov 2022) It is consistent with ZFC that every countable
sequential group is either metrizable or kω.
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kω-groups

A topological space X is kω if there is a countable family K of
compact subsets of X such that a set U is open if and only if its
intersection with every K ∈ K is relatively open in K .

Countable kω groups are definable objects, they have Fσδ topologies,

Countable kω groups are completely classified by their compact
scatteredness rank defined as the supremum of the Cantor-Bendixson
index of their compact subspaces by a theorem of Zelenyuk:

Theorem (Zelenyuk 1995)

Countable kω groups of the same compact scatteredness rank are
homeomorphic.
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kω-groups- continued

Theorem (Zelenyuk 1995)

Countable kω groups of the same compact scatteredness rank are
homeomorphic.

α < ω1 let Kα be a fixed countable family of compact subsets of the
rationals Q closed under translations, inverse and algebraic sums
such that ωα = sup{rankCB(K ) : K ∈ Kα}, and let

τα = {U ⊆ Q : ∀K ∈ Kα : U ∩ K is open in K}.

τ0 is the discrete topology on Q, so Q0 = (Q, τ0)

τα is a kω sequential group topology on Q and Qα = (Q, τα)

Q is determined by taking into account all of its compact subsets, so
it makes sense to denote it as Qω1
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Countable sequential groups - continued

Theorem (H.-Shibakov 2022)

Assuming IIA, every countable sequential group is either metrizable or kω.

Corollary

Assuming IIA, for every infinite countable sequential group G there is
exactly one α ⩽ ω1 such that G is homeomorphic to Qα.
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Dream conjecture

Conjecture (H.-Shibakov)

Is it consistent that every countable sequential group

1 has a dense set without non-trivial convergent sequences,

2 is metrizable, or

3 is kω.
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Sequential coreflection in groups

Given a topological space (X , τ) its sequential coreflection (X , [τ ]) is
the strongest topology with the same convergent sequences.

If (G, τ) is a topological group and (G2, [τ ]2) is sequential then [τ ]
is a group topology.

(Banakh-Zdomskyy 2004) If (G, [τ ]) contains a copy of both the
sequential fan and the convergent sequence of discrete sets then
(G, τ) is not remotely sequential.
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Remotely sequential non-sequential spaces and groups

There is a topology on the ordinal ωω + 1 which is remotely
sequential and coincides with the order topology on all proper initial
segments call this space X .

The free boolean group over X is a remotely sequential
non-sequential group with a kω-sequential coreflection.
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Dream conjecture-revised

Conjecture (H.-Shibakov)

Is it consistent that every countable sequential group (G, τ) either

1 has a dense set without non-trivial convergent sequences,

2 is metrizable, or

3 (G, [τ ]) is kω.

We have been able to confirm the conjecture for definable spaces.
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Invariant Ideal Axiom

IIA : For every countable groomed topological group G and every tame,
invariant, weakly closed ideal I ⊆ P(G) one of the following holds:

1 there is a countable S ⊆ I such that for every infinite sequence C
convergent in G there is an I ∈ S such that C ∩ I is infinite, (=
countable sequence capturing)

2 there is a countable H ⊆ I+ such that for every non-empty open
U ⊆ G there is an H ∈ H such that H \ U ∈ I (= countable almost
π-network.).
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Open problems

1 Is it consistent (follows from IIA) that every countable group is
either metrizable, has kω sequential coreflection or contains a dense
set without a convergent subsequence?

2 Is there (in ZFC) a Fréchet group whose square is not Fréchet?

3 Is there a sequential group whose square is not sequential?
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That’s all!

Thank you for your attention!

M. Hrušák Remotely sequential spaces


