

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Krakow

Graphs with tranches

Michał Kowalewski Based on joint work with Piotr Oprocha

> AGH University of Krakow Faculty of Applied Mathematics kowalewski@agh.edu.pl

The 38th Summer Conference on Topology and its Applications, Coimbra, July 8-12, 2024

Michał Kowalewski (AGH) Graphs with tranches SUMTOPO 2024

Warsaw circle

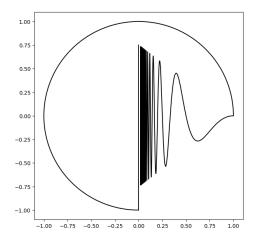
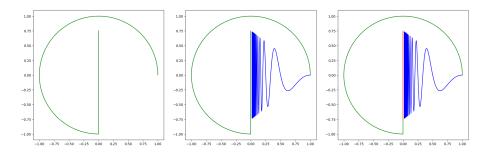
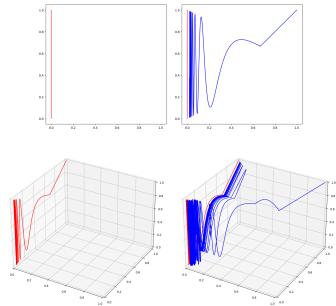


Figure: Warsaw Circle

SUMTOPO 2024

Warsaw circle as a quasi-graph¹




Figure: Construction of the Warsaw Circle as a quasi-graph

www.agh.edu.pl

Higher order quasi-arcs

Warsaw circle as generalized sin(1/x)-type continuum²

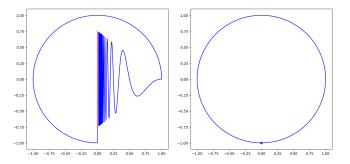


Figure: Warsaw Circle and its image under monotone mapping ϕ from definiton of $\sin(1/x)$ -type continuum

www.agh.edu.pl

²C. Mouron L. Hoehn. "Hierarchies of chaotic maps on continua". In: *Ergodic Theory Dynam. Systems* 34.6 (2014), pp. 1897–1913. ISSN: 0143-3857. DOI: 10.1017/etds.2013.32. URL: https://doi.org/10.1017/etds.2013.324.69 → 4 € →

Quasi-graph thats not a sin(1/x)-type continuum

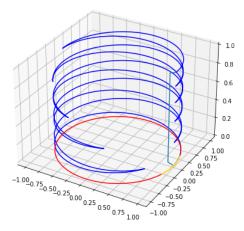


Figure: A quasi-graph whose limit set is circle, but is not a generalized $\sin(1/x)$ -type continuum

SUMTOPO 2024

Sufficient condition for being sin(1/x)-type continuum

A G H

Lemma

Let X be a quasi-graph. Then X is a regular tranched graph with mapping $\phi\colon X\to X/_\sim$, where relation \sim collapses connected components of limit sets and ϕ is a natural projection.

Theorem

Let $X = G \cup \bigcup_{j=1}^{n} L_{j}$ be a quasi-graph. Assume that for every connected component $\Lambda \subset \bigcup \omega(L_{j})$ the following assertions hold:

- lacktriangle There is a quasi-arc L in X such that $\omega(L)=\Lambda$ and
- **2** Continuum Λ is arc-like.

Then X is a generalized sin(1/x)-type continuum.

7/14

Sin(1/x)-type continuum with branching point in a tranche

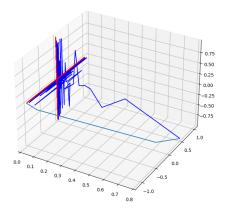


Figure: A quasi-graph which is generalized $\sin(1/x)$ -type continuum and contains 4-star as a tranch

SUMTOPO 2024

Necessary condition for being sin(1/x)-type continuum

Theorem

Let X be a quasi-graph that is a generalized sin(1/x) type continuum. Then for every connected component $\Lambda \subset \bigcup \omega(L_j)$ there is a quasi-arc $L \subset X$ such that $\omega(L) = \Lambda$

Set of tranches doesn't need to be closed

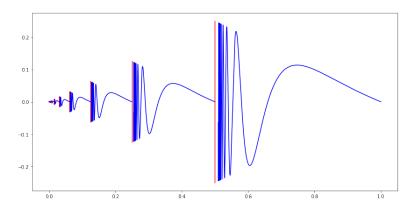


Figure: Generalized $\sin(1/x)$ -type continuum whose set of tranches is not closed

Michał Kowalewski (AGH)

There can be infinite hierarchy of quasi-arcs

www.agh.edu.pl -

$$A = \bigcup_{n=0}^{\infty} \sigma^n(\{x, f(x), \dots, f^n(x), \dots) : x \in (0, 1]\}) \cup \{0\}^{\infty}.$$
 (1)

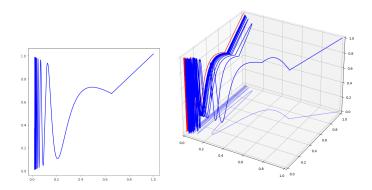
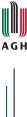



Figure: $f:(0,1] \to (0,1]$ and continuum of order 2

Double-sided sin(1/x)-continuum

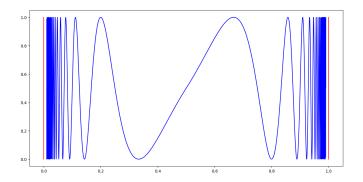
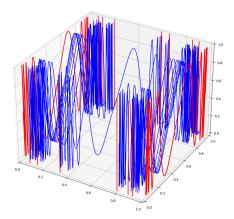



Figure: Continuum X

A strange sin(1/x)-type continuum

$$\widehat{X} = \{(x_0, x_1, \dots, x_n, \dots) : x_0 \in [0, 1], \forall i \ (x_{i-1}, x_i) \in X\}$$

Sufficient and necessary condition to be a quasi-graph.

We can prove that:

- ① \widehat{X} is a $\sin(1/x)$ -type continuum,
- ② Set of tranches of \widehat{X} is dense in \widehat{X} ,
- **3** Every fiber is either a singleton or is homeomorphic to \widehat{X} ,
- lacktriangledown Continuum \widehat{X} contains no arcs inside it,

Theorem

Let X be a tranched graph. Then X is a quasi-graph if and only if it is arcwise connected, regular and of finite order.