On ω -Corson and NY compact spaces

Mikołaj Krupski

University of Murcia and University of Warsaw JOINT WORK WITH A. AVILÉS

Supported by Project PID2021-122126NB-C32 funded by MICIU/AEI /10.13039/501100011033/ and FEDER A way of making Europe, Fundación Séneca, NextGenerationEU through María Zambrano fellowship and NCN

イロト 不得 トイヨト イヨト

A compact space K is *Eberlein compact* if K is homeomorphic to a weakly compact subset of a Banach space.

Equivalently: K is Eberlein compact iff for some Γ , K embeds into

$$c_0(\Gamma) = \{ x \in \mathbb{R}^{\Gamma} : \forall \varepsilon > 0 \ \{ \gamma \in \Gamma : |x(\gamma)| > \varepsilon \} \text{ is finite} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Every metrizable compactum is Eberlein compact.

A compact space K is Corson compact if, for some Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\Sigma(\mathbb{R}^{\Gamma}) = \{x \in \mathbb{R}^{\Gamma} : |\{\gamma \in \Gamma : x(\gamma) \neq 0\}| < \omega_1\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A compact space K is Corson compact if, for some Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\Sigma(\mathbb{R}^{\mathsf{\Gamma}}) = \{x \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma \in \mathsf{\Gamma} : x(\gamma) \neq 0\}| < \omega_1\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Every Eberlein compact space is Corson compact.

A compact space K is Corson compact if, for some Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\Sigma(\mathbb{R}^{\mathsf{\Gamma}}) = \{ x \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma \in \mathsf{\Gamma} : x(\gamma) \neq 0 \}| < \omega_1 \}$$

Every Eberlein compact space is Corson compact.

Replacing ω_1 above by an infinite cardinal κ we get the notion of $\kappa\text{-Corson compact space.}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In this terminology Corson compact = ω_1 -Corson compact.

A compact space K is Corson compact if, for some Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\Sigma(\mathbb{R}^{\mathsf{\Gamma}}) = \{ x \in \mathbb{R}^{\mathsf{\Gamma}} : |\{ \gamma \in \mathsf{\Gamma} : x(\gamma) \neq 0 \}| < \omega_1 \}$$

Every Eberlein compact space is Corson compact.

Replacing ω_1 above by an infinite cardinal κ we get the notion of $\kappa\text{-Corson compact space.}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In this terminology Corson compact = ω_1 -Corson compact.

A compact space K is Corson compact if, for some Γ , K is homeomorphic to a subset of the Σ -product of real lines

$$\Sigma(\mathbb{R}^{\mathsf{\Gamma}}) = \{x \in \mathbb{R}^{\mathsf{\Gamma}} : |\{\gamma \in \mathsf{\Gamma} : x(\gamma) \neq 0\}| < \omega_1\}$$

Every Eberlein compact space is Corson compact.

Replacing ω_1 above by an infinite cardinal κ we get the notion of κ -Corson compact space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In this terminology Corson compact = ω_1 -Corson compact.

Here we will be interested in ω -Corson compact spaces

Let $\{X_{\gamma} : \gamma \in \Gamma\}$ be a family of topological spaces. Let $a = (a_{\gamma})_{\gamma \in \Gamma} \in X = \prod_{\gamma \in \Gamma} X_{\gamma}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $\{X_{\gamma} : \gamma \in \Gamma\}$ be a family of topological spaces. Let $a = (a_{\gamma})_{\gamma \in \Gamma} \in X = \prod_{\gamma \in \Gamma} X_{\gamma}$ The σ -product in X centered at a is

$$\sigma(X, \mathbf{a}) = \{ x \in \prod_{\gamma \in \Gamma} X_{\gamma} : |\{ \gamma \in \Gamma : x(\gamma) \neq \mathbf{a}_{\gamma} \}| < \omega \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $\{X_{\gamma} : \gamma \in \Gamma\}$ be a family of topological spaces. Let $a = (a_{\gamma})_{\gamma \in \Gamma} \in X = \prod_{\gamma \in \Gamma} X_{\gamma}$ The σ -product in X centered at a is

$$\sigma(X, \mathbf{a}) = \{ x \in \prod_{\gamma \in \Gamma} X_{\gamma} : |\{ \gamma \in \Gamma : x(\gamma) \neq \mathbf{a}_{\gamma} \}| < \omega \}.$$

Special cases:

• If $X_{\gamma} = [0, 1]$ and $a_{\gamma} = 0$ for all $\gamma \in \Gamma$, then we write $\sigma([0, 1]^{\Gamma})$.

• If
$$X_{\gamma} = \mathbb{R}$$
 and $a_{\gamma} = 0$ for all $\gamma \in \Gamma$, then we write $\sigma(\mathbb{R}^{\Gamma})$.

• If $X_{\gamma} = [0, 1]^{\omega}$ and $a_{\gamma} = (0, 0, ...)$ for all $\gamma \in \Gamma$, then we write $\sigma(([0, 1]^{\omega})^{\Gamma})$.

Let $\{X_{\gamma} : \gamma \in \Gamma\}$ be a family of topological spaces. Let $a = (a_{\gamma})_{\gamma \in \Gamma} \in X = \prod_{\gamma \in \Gamma} X_{\gamma}$ The σ -product in X centered at a is

$$\sigma(X, \mathbf{a}) = \{ x \in \prod_{\gamma \in \Gamma} X_{\gamma} : |\{ \gamma \in \Gamma : x(\gamma) \neq \mathbf{a}_{\gamma} \}| < \omega \}.$$

Special cases:

• If $X_{\gamma} = [0, 1]$ and $a_{\gamma} = 0$ for all $\gamma \in \Gamma$, then we write $\sigma([0, 1]^{\Gamma})$.

• If
$$X_{\gamma} = \mathbb{R}$$
 and $a_{\gamma} = 0$ for all $\gamma \in \Gamma$, then we write $\sigma(\mathbb{R}^{\Gamma})$.

• If $X_{\gamma} = [0, 1]^{\omega}$ and $a_{\gamma} = (0, 0, ...)$ for all $\gamma \in \Gamma$, then we write $\sigma(([0, 1]^{\omega})^{\Gamma})$.

A compact space K is ω -Corson if K embeds into $\sigma(\mathbb{R}^{\Gamma})$ for some Γ . Equivalently, K embeds into $\sigma([0, 1]^{\Gamma})$, for some Γ .

Every ω -Corson compact space K is *strongly countable-dimensional*, i.e. it can be written as a countable union $K = \bigcup_{n \in \mathbb{N}} K_n$ of finite-dimensional compacta K_n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Every ω -Corson compact space K is *strongly* countable-dimensional, i.e. it can be written as a countable union $K = \bigcup_{n \in \mathbb{N}} K_n$ of finite-dimensional compacta K_n .

In particular, the Hilbert cube $[0,1]^{\omega}$ is not ω -Corson. Because of that the class of ω -Corson compacta is rather peculiar. E.g. $\{0,1\}^{\omega}$ is ω -Corson and maps onto $[0,1]^{\omega}$ so this class is not stable under continuous images.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Every ω -Corson compact space K is *strongly* countable-dimensional, i.e. it can be written as a countable union $K = \bigcup_{n \in \mathbb{N}} K_n$ of finite-dimensional compacta K_n .

In particular, the Hilbert cube $[0,1]^{\omega}$ is not ω -Corson. Because of that the class of ω -Corson compacta is rather peculiar. E.g. $\{0,1\}^{\omega}$ is ω -Corson and maps onto $[0,1]^{\omega}$ so this class is not stable under continuous images.

Definition

A compact space K is NY compact if K is homeomorphic to a subset of some σ -product of metrizable compacta.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Every ω -Corson compact space K is *strongly* countable-dimensional, i.e. it can be written as a countable union $K = \bigcup_{n \in \mathbb{N}} K_n$ of finite-dimensional compacta K_n .

In particular, the Hilbert cube $[0,1]^{\omega}$ is not ω -Corson. Because of that the class of ω -Corson compacta is rather peculiar. E.g. $\{0,1\}^{\omega}$ is ω -Corson and maps onto $[0,1]^{\omega}$ so this class is not stable under continuous images.

Definition

A compact space K is NY compact if K is homeomorphic to a subset of some σ -product of metrizable compacta.

Proposition

A compact space K is NY compact iff K embeds into $\sigma(([0,1]^{\omega})^{\Gamma})$, for some Γ .

• The class \mathcal{NY} of NY compacta was studied for the first time by Nakhmanson and Yakovlev in 1981.

- The class \mathcal{NY} of NY compacta was studied for the first time by Nakhmanson and Yakovlev in 1981.
- Every metrizable compactum is NY compact and every NY compact space is Eberlein compact.

- The class \mathcal{NY} of NY compacta was studied for the first time by Nakhmanson and Yakovlev in 1981.
- Every metrizable compactum is NY compact and every NY compact space is Eberlein compact.
- The space A(ω₁)^ω, where A(ω₁) is the one-point compactification of a discrete set of size ω₁, is (uniform) Eberlein compact but not NY.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Valdivia compact spaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A compact space K is Valdivia compact if there is Γ and a homeomorphic embedding $h: K \to \mathbb{R}^{\Gamma}$ such that $h(K) \cap \Sigma(\mathbb{R}^{\Gamma})$ is dense in h(K).

Valdivia compact spaces

Definition

A compact space K is *Valdivia* compact if there is Γ and a homeomorphic embedding $h : K \to \mathbb{R}^{\Gamma}$ such that $h(K) \cap \Sigma(\mathbb{R}^{\Gamma})$ is dense in h(K).

Definition (Kubiś, Leiderman 2004)

A compact space K is *semi-Eberlein* if there is Γ and a homeomorphic embedding $h: K \to \mathbb{R}^{\Gamma}$ such that $h(K) \cap c_0(\Gamma)$ is dense in h(K).

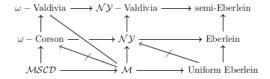
A compact space K is NY-Valdivia if there is Γ and an embedding $h: K \to \prod_{\gamma \in \Gamma} Q_{\gamma}$, where $Q_{\gamma} = [0, 1]^{\omega}$ such that $h(K) \cap \sigma(([0, 1]^{\omega})^{\Gamma})$ is dense in h(K)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

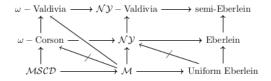
A compact space K is NY-Valdivia if there is Γ and an embedding $h: K \to \prod_{\gamma \in \Gamma} Q_{\gamma}$, where $Q_{\gamma} = [0, 1]^{\omega}$ such that $h(K) \cap \sigma(([0, 1]^{\omega})^{\Gamma})$ is dense in h(K)

Definition

A compact space K is ω -Valdivia if there is Γ and an embedding $h: K \to [0, 1]^{\Gamma}$ such that $h(K) \cap \sigma([0, 1]^{\Gamma})$ is dense in h(K).



イロト 不得 トイヨト イヨト

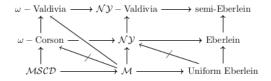


イロト 不得 トイヨト イヨト

-

Question (Kalenda, 2022)

Does there exist an Eberlein compact space which is not *NY*-Valdivia?

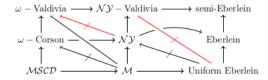


Question (Kalenda, 2022)

Does there exist an Eberlein compact space which is not *NY*-Valdivia?

Question (Kubiś, Leiderman 2004)

Does there exist a semi-Eberlein compact space which is not ω -Valdivia?



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A family \mathcal{U} of subsets of a topological space X is T_0 -separating if for any $x \neq y \in X$ there is $U \in \mathcal{U}$ with $|\{x, y\} \cap U| = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A family \mathcal{U} of subsets of a topological space X is T_0 -separating if for any $x \neq y \in X$ there is $U \in \mathcal{U}$ with $|\{x, y\} \cap U| = 1$.

- A family U is point-finite (point-countable) if for any x ∈ X the collection {U ∈ U : x ∈ U} is finite (countable).
- A family U is σ-point-finite if U = ∪{U_n : n ∈ ℕ} and each U_n is point-finite.

A family \mathcal{U} of subsets of a topological space X is T_0 -separating if for any $x \neq y \in X$ there is $U \in \mathcal{U}$ with $|\{x, y\} \cap U| = 1$.

- A family U is point-finite (point-countable) if for any x ∈ X the collection {U ∈ U : x ∈ U} is finite (countable).
- A family U is σ-point-finite if U = ∪{U_n : n ∈ ℕ} and each U_n is point-finite.
- A family U is *block-point-finite* if for some set Γ one can write U = ∪{U_γ : γ ∈ Γ} where each family U_γ is countable and the family {∪U_γ : γ ∈ Γ} is point-finite in X.

A family \mathcal{U} of subsets of a topological space X is T_0 -separating if for any $x \neq y \in X$ there is $U \in \mathcal{U}$ with $|\{x, y\} \cap U| = 1$.

- A family U is point-finite (point-countable) if for any x ∈ X the collection {U ∈ U : x ∈ U} is finite (countable).
- A family U is σ-point-finite if U = ∪{U_n : n ∈ ℕ} and each U_n is point-finite.
- A family U is *block-point-finite* if for some set Γ one can write U = ∪{U_γ : γ ∈ Γ} where each family U_γ is countable and the family {UU_γ : γ ∈ Γ} is point-finite in X.

Theorem (Rosenthal)

A compact space K is Eberlein (Corson) compact iff K has a σ -point-finite (point-countable), T_0 -separating family of open F_σ sets

Proposition (Marciszewski, Plebanek, Zakrzewski, 2023)

For any compact space K, TFAE:

- **1** K has a point-finite, T_0 -separating family of open F_σ sets
- **2** K is scattered Eberlein compact space.

A space X is *scattered* if every nonempty subset $A \subseteq X$ has a relative isolated point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition (Marciszewski, Plebanek, Zakrzewski, 2023)

For any compact space K, TFAE:

- **1** K has a point-finite, T_0 -separating family of open F_σ sets
- **2** K is scattered Eberlein compact space.

A space X is *scattered* if every nonempty subset $A \subseteq X$ has a relative isolated point.

Theorem (Alster, 1979)

For any compact space K, TFAE:

- \bullet K is scattered Eberlein
- \bigcirc K is scattered Corson
- **3** K is strong Eberlein, i.e. embeds into $\sigma(\{0,1\}^{\Gamma})$

Proposition (Marciszewski, Plebanek, Zakrzewski, 2023)

For any compact space K, TFAE:

- **1** K has a point-finite, T_0 -separating family of open F_σ sets
- **2** K is scattered Eberlein compact space.

A space X is *scattered* if every nonempty subset $A \subseteq X$ has a relative isolated point.

Theorem (Alster, 1979)

For any compact space K, TFAE:

- \bullet K is scattered Eberlein
- \bigcirc K is scattered Corson
- **3** K is strong Eberlein, i.e. embeds into $\sigma(\{0,1\}^{\Gamma})$

Proposition (Marciszewski, Plebanek, Zakrzewski, 2023) An *NY* compact space K is ω -Corson iff K is strongly countable-dimensional.

Theorem (Nakhmanson, Yakovlev, 1981)

For any compact space K, TFAE:

- 1 K is NY compact
- **2** *K* has a block-point-finite, T_0 -separating family of open F_σ sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let \mathcal{M} be a class of separable metrizable spaces. We say that a space X is \mathcal{M} -scattered if every nonempty subset $A \subseteq X$ has a nonempty relative open subset $U \in \mathcal{M}$.

Let \mathcal{M} be a class of separable metrizable spaces. We say that a space X is \mathcal{M} -scattered if every nonempty subset $A \subseteq X$ has a nonempty relative open subset $U \in \mathcal{M}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Theorem (Yakovlev, 1980)
- If K is NY compact space, then K is \mathcal{M} -scattered.

Let \mathcal{M} be a class of separable metrizable spaces. We say that a space X is \mathcal{M} -scattered if every nonempty subset $A \subseteq X$ has a nonempty relative open subset $U \in \mathcal{M}$.

- Theorem (Yakovlev, 1980)
- If K is NY compact space, then K is \mathcal{M} -scattered.

Theorem (Marciszewski, Plebanek, Zakrzewski, 2023)

For any compact space K, TFAE:

- 1 K is NY compact
- **2** K is hereditarily metacompact and \mathcal{M} -scattered

Theorem (Alster, 1979)

For any compact space K, TFAE:

- 1 K is scattered Eberlein
- \bigcirc K is scattered Corson
- **3** K is strong Eberlein, i.e. embeds into $\sigma(\{0,1\}^{\Gamma})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Alster, 1979)

For any compact space K, TFAE:

- 1 K is scattered Eberlein
- \bigcirc K is scattered Corson
- **3** K is strong Eberlein, i.e. embeds into $\sigma(\{0,1\}^{\Gamma})$

Theorem (Avilés, K., 2024)

For any compact space K, TFAE:

- 1 K is NY compact
- **2** K is Corson compact and \mathcal{M} -scattered
- **3** K is Eberlein compact \mathcal{M} -scattered
- **4** K is hereditarily metalindelöf and \mathcal{M} -scattered

Duplicates

Let X be a topological space. The Alexandroff duplicate of X is the space AD(X) whose underlying set is $X \times \{0, 1\}$, endowed with the following topology: Points in $X \times \{1\}$ are isolated and a basic open neighborhood of (x, 0) is of the form

 $(U\times \{0,1\})\setminus \{(x,1)\},$

where U is an open neighborhood of x in X.

(ロ)、(型)、(E)、(E)、 E) の(()

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Avilés, K., 2024)

For any compact space K, TFAE:

- **1** K is NY compact (ω -Corson)
- **2** AD(K) is NY compact (ω -Corson)
- **3** AD(K) is *NY*-Valdivia (ω -Valdivia)

Theorem (Avilés, K., 2024)

For any compact space K, TFAE:

- **1** K is NY compact (ω -Corson)
- **2** AD(K) is NY compact (ω -Corson)
- **3** AD(K) is *NY*-Valdivia (ω -Valdivia)

Example

 $AD([0,1]^{\omega})$ is NY compact but it is not ω -Valdivia

Theorem (Avilés, K., 2024)

For any compact space K, TFAE:

- **1** K is NY compact (ω -Corson)
- **2** AD(K) is NY compact (ω -Corson)
- **3** AD(K) is *NY*-Valdivia (ω -Valdivia)

Example

 $AD([0,1]^{\omega})$ is NY compact but it is not ω -Valdivia

Question (Kubiś, Leiderman, 2004)

Does there exist a semi-Eberlein compact space which is not $\omega\text{-Valdivia}?$

YES!

Example

Let $A(\omega_1)$ be the one-point compactification of uncountable discrete set. Consider $L = A(\omega_1)^{\omega}$. Then L is (uniform) Eberlein compact but not NY compact. So AD(L) is (uniform) Eberlein compact but not NY-Valdivia.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Let $A(\omega_1)$ be the one-point compactification of uncountable discrete set. Consider $L = A(\omega_1)^{\omega}$. Then L is (uniform) Eberlein compact but not NY compact. So AD(L) is (uniform) Eberlein compact but not NY-Valdivia.

Theorem (Avilés, K., 2024)

For any compact space K, TFAE:

- **1** *K* is Eberlein compact
- **2** AD(K) is Eberlein compact
- **3** AD(K) is semi-Eberlein

Example

Let $A(\omega_1)$ be the one-point compactification of uncountable discrete set. Consider $L = A(\omega_1)^{\omega}$. Then L is (uniform) Eberlein compact but not NY compact. So AD(L) is (uniform) Eberlein compact but not NY-Valdivia.

Theorem (Avilés, K., 2024)

For any compact space K, TFAE:

- **1** *K* is Eberlein compact
- **2** AD(K) is Eberlein compact
- **3** AD(K) is semi-Eberlein

Corollary (Kubiś & Leiderman, Todorcevic)

There exists a Corson compact space which is not semi-Eberlein.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Every uniform Eberlein compact space is a continuous image of a closed subspace of the space $A(\kappa)^{\omega}$, where $A(\kappa)$ is the one point compactification of a discrete set of size κ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Know:

Uniform Eberlein compacta need not be NY-Valdivia.

Question

Is every continuous image of $A(\omega_1)^{\omega}$ NY-Valdivia?