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A frame is a complete lattice L in which the infinite distributive
law

a ∧
∨

S =
∨
{a ∧ s | s ∈ S}

holds for all a ∈ L and S ⊆ L.
A frame homomorphism is a map between frames that preserves
finite meets, including the bottom element 0, and arbitrary joins,
including the top element 1.
Associated with any frame homomorphism h : L −→ M is its right
adjoint h∗ : M −→ L given by

h∗(a) =
∨
{x ∈ L | h(x) ≤ a}



An element a is said to be rather below an element b written a ≺ b
if there exists an element c ∈ L such that a ∧ c = 0 and b ∨ c = 1.
An element a is said to be completely below an element b written
a ≺≺ b if there exists a sequence (cq) indexed by the rationals
Q ∩ [0, 1] such that c0 = a, c1 = b and cr ≺ cs whenever r < s.

Definition
A frame L is said to be regular if for every a ∈ L,

a =
∨
{x ∈ L | x ≺ a}.

Definition
A frame L is said to be completely regular if for every a ∈ L,

a =
∨
{x ∈ L | x ≺≺ a}.



A set I is said to be an ideal of RL if

I 1 /∈ I ,

I a, b ∈ I implies that a ∨ b ∈ I ,

I a ∈ RL and b ∈ I with a ≤ b, then a ∈ I .

An ideal I of RL is said to be:

I semiprime if ϕ ∈ RL and ϕ2 ∈ I implies that ϕ ∈ I .

I z-ideal if for each ϕ ∈ RL and λ ∈ I , cozϕ = cozλ implies
that ϕ ∈ I .

I a radical ideal if I =
√

I , where
√

I is the radical of I given by√
I = {ϕ ∈ RL | ϕn ∈ I for some n ∈ N}.

I d-ideal if Ann2(a) ⊆ I for each a ∈ I .



For any frame L, we let r(RL) = {ϕ ∈ RL | Ann(ϕ) = 0}. Then
r(RL) is the set of all nonzero divisors of RL, called regular
elements of RL. Whenever an ideal consists entirely of zero
divisors, it is called a non-regular ideal.

Definition
An ideal I of RL is said to be an r -ideal if for each ϕ ∈ RL and
ϕ ∈ r(L), ϕα ∈ I implies that ϕ ∈ I .

Let I be an ideal of RL and define

Ir = {ϕ ∈ RL | ϕα ∈ I for some α ∈ r(L)}.

Lemma
If I is a non-regular ideal of RL, then Ir is an r-ideal.



Lemma
Let I be a non-regular ideal of RL. Then the following statements
hold.

(i) If I is semiprime, then Ir is also semiprime and if I is prime,
then Ir = I .

(ii) Min(Ir ) ⊆ Min(I ).

(iii) Ir is the smallest r -ideal containing I . In other words, Ir is the
intersection of all r -ideals of RL containing I .

(iv) I is an r-ideal if and only if I = Ir .

(v) If I is an r-ideal, then every P ∈ Min(I ) is also an r-ideal and
if I is semiprime, the converse is also true.

(vi) If I is a z-ideal, then Ir is also a z-ideal. The converse is not
true.



Theorem
Every d-ideal in a commutative ring R is an r-ideal.

Lemma
Let I and J be non-regular ideals of RL. Then the following
statements hold.

(i) If I ⊆ J, then Ir ⊆ Jr .

(ii) (I ∩ J)r = Ir ∩ Jr .

(iii) Ir + Jr ⊆ (I + J)r .

(iv) IrJr ⊆ (IJ)r .



Definition
A frame L is said to be cozero complemented if for each c ∈ CozL
there is a d ∈ CozL such that c ∧ d = 0 and c ∨ d is dense.

Proposition

A frame L is cozero complemented if and only if for each ϕ ∈ RL,
there is a non-zero divisor α such that ϕα = ϕ2.

Proposition

The following statements are equivalent for any frame L:

(i) L is cozero complemented.

(ii) Every r -ideal of RL is a z-ideal.

(iii) Every prime r-ideal of RL is a z-ideal.

(iv) For each ϕ ∈ RL, (ϕ)r = (ϕ2)r .



Corollary

The following statements are equivalent for any frame L:

(i) L is cozero complemented.

(ii) Every r -ideal of RL is semiprime.

(iii) For each ideal I of RL, Iz ⊆ Ir .

Proposition

The following are equivalent for any frame L:

(i) L is an almost P-frame.

(ii) Every ideal of RL is an r-ideal.

(iii) Every ideal I ⊆ zd(RL) is an r-ideal.



Proposition

The following are equivalent for any frame L:

(i) L is an almost P-frame.

(ii) Every z-ideal of RL is an r-ideal.

(iii) For each ideal I of RL, Ir ⊆ Iz .

(iv) Every prime z-ideal of RL is an r-ideal.

Definition
A frame L is said to be a P-frame if for every c ∈ CozL there is a
d ∈ CozL such that c ∧ d = 0 and c ∨ d = 1.

Lemma
A frame L is a P-frame if and only if it is a cozero complemented
almost P-frame.



Corollary

The following statements are equivalent:

(i) L is a P-frame.

(ii) The set of all z-ideals and the set of all r -ideals of RL
coincide.

(iii) For each ideal I of RL, Iz = Ir



Definition
An ideal I of RL is said to be a zr -ideal if I is an r-ideal which is
also a z-ideal.

Recall that for any ϕ in RL, Mϕ denotes the intersection of all
maximal ideals of RL containing ϕ and Pϕ is the intersection of all
minimal prime ideals of RL containing ϕ. Now we define (Mϕ)r by

(Mϕ)r = {λ ∈ RL | λα ∈ Mϕ for some α ∈ r(RL)}
= {λ ∈ RL | cozϕ = coz(λα) for some α ∈ r(RL)}.

Lemma
An ideal I of RL is a zr -ideal if and only if (Mϕ)r ⊆ I for each
ϕ ∈ I .



Corollary

An ideal I of RL is a zr -ideal if and only if whenever ϕ, λ ∈ RL
and α ∈ r(RL), cozϕ = coz(λα) and ϕ ∈ I implies that λ ∈ I .

Definition
A frame homomorphism h : L→ M is said to be a C -quotient map
if every δ : OR −→ L there is a γ : OR −→ M such that h � δ = γ.
Restricting δ to bounded functions defines a C ∗-quotient map.

Recall that a frame L is said to be a quasi F -frame if for every
dense a ∈ Coz L, the open quotient map L −→↓ a is a C ∗-quotient
map.

Proposition

The sum of two zr -ideals of RL is a zr -ideal or all of RL if and
only if L is a quasi F -frame.
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