Scales and combinatorial covering properties

Michał Pawlikowskik

Interdisciplinary Doctoral School of Lodz University of Technology

38th Summer Conference on Topology and its Applications, 8th-12th of July 2024, Coimbra

The research was supported by the National Science Center, Poland under Weave-UNISONO grant *Set-theoretical aspects of topological selections* 2021/03/Y/ST1/00122.

This research has been completed while the speaker was the Doctoral Candidate in the Interdisciplinary Doctoral School at the Łódź University of Technology, Poland.

Remark

We only consider subspaces of $\mathcal{P}(\omega)$.

Remark

We only consider subspaces of $\mathcal{P}(\omega)$.

Definition

We say that an open cover \mathcal{U} of X (such that $X \notin \mathcal{U}$) is

- a γ -cover, if it is infinite and for each $x \in X$ the set $\{ U \in U : x \notin U \}$ is finite;
- ② an ω -cover, if for each finite $F \subseteq X$ there exists $U \in U$, such that $F \subseteq U$.

 $\begin{array}{ll} \mathsf{S}_1(\mathcal{A},\mathcal{B}) & \text{for each sequence } \mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{A}, \text{ there are sets} \\ U_0\in\mathcal{U}_0, U_1\in\mathcal{U}_1,\ldots \text{ such that } \{ U_n:n\in\omega\}\in\mathcal{B}, \end{array}$

$$\begin{array}{ll} \mathsf{S}_1(\mathcal{A},\mathcal{B}) & \text{for each sequence } \mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{A}, \text{ there are sets} \\ U_0\in\mathcal{U}_0, U_1\in\mathcal{U}_1,\ldots \text{ such that } \{ U_n:n\in\omega\}\in\mathcal{B}, \end{array}$$

$$\begin{split} \mathsf{S}_{\mathrm{fin}}(\mathcal{A},\mathcal{B}) &: \text{ for each sequence } \mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{A}, \text{ there are finite sets } \\ \mathcal{F}_0 \subseteq \mathcal{U}_0,\mathcal{F}_1 \subseteq \mathcal{U}_1,\ldots \text{ such that } \bigcup_{n\in\omega}\mathcal{F}_n\in\mathcal{B}, \end{split}$$

$$\begin{array}{ll} \mathsf{S}_1(\mathcal{A},\mathcal{B}) & \text{for each sequence } \mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{A}, \text{ there are sets} \\ U_0\in\mathcal{U}_0, U_1\in\mathcal{U}_1,\ldots \text{ such that } \{ U_n:n\in\omega\}\in\mathcal{B}, \end{array}$$

$$\begin{split} \mathsf{S}_{\mathrm{fin}}(\mathcal{A},\mathcal{B}) &: \text{ for each sequence } \mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{A}, \text{ there are finite sets } \\ \mathcal{F}_0 \subseteq \mathcal{U}_0,\mathcal{F}_1 \subseteq \mathcal{U}_1,\ldots \text{ such that } \bigcup_{n\in\omega}\mathcal{F}_n\in\mathcal{B}, \end{split}$$

 $\begin{array}{l} U_{\mathrm{fin}}(\mathcal{A},\mathcal{B}) \text{: for each sequence } \mathcal{U}_0,\mathcal{U}_1,\ldots\in\mathcal{A}\text{, there are finite sets} \\ \mathcal{F}_0\subseteq\mathcal{U}_0,\mathcal{F}_1\subseteq\mathcal{U}_1,\ldots \text{ such that } \{\bigcup\mathcal{F}_n:n\in\omega\}\in\mathcal{B}. \end{array}$

Scheepers Diagram

Each σ -compact space is $U_{fin}(O, \Gamma)$.

Each σ -compact space is $U_{fin}(O, \Gamma)$.

Proof.

Since X is σ -compact, there exists a sequence of increasing compact spaces X_n , such that $X = \bigcup_{n=0}^{\infty} X_n$. Let $\mathcal{U}_0, \mathcal{U}_1, \ldots$ be a sequence of open covers of X (we assume that each cover does not contain X).

Each σ -compact space is $U_{fin}(O, \Gamma)$.

Proof.

Since X is σ -compact, there exists a sequence of increasing compact spaces X_n , such that $X = \bigcup_{n=0}^{\infty} X_n$. Let $\mathcal{U}_0, \mathcal{U}_1, \ldots$ be a sequence of open covers of X (we assume that each cover does not contain X). Then $\mathcal{U}_n = \{ U_{n,m} : m \in \omega \}$ is a cover of X_n for each natural n.

Each σ -compact space is $U_{fin}(O, \Gamma)$.

Proof.

Since X is σ -compact, there exists a sequence of increasing compact spaces X_n , such that $X = \bigcup_{n=0}^{\infty} X_n$. Let $\mathcal{U}_0, \mathcal{U}_1, \ldots$ be a sequence of open covers of X (we assume that each cover does not contain X). Then $\mathcal{U}_n = \{ U_{n,m} : m \in \omega \}$ is a cover of X_n for each natural n. By compactness we find m_n , such that $X_n \subseteq \bigcup_{i=0}^{m_n} U_{n,i}$. Let $U_n := \bigcup_{i=0}^{m_n} U_{n,i}$. Then $\{ U_n : n \in \omega \}$ is a γ -cover of X. \Box

Hurewicz's Conjecture

X is σ -compact if and only if X is $U_{fin}(O, \Gamma)$.

Hurewicz's Conjecture

X is σ -compact if and only if X is $U_{fin}(O, \Gamma)$.

Theorem (Just, Miller, Scheepers, Szeptycki)

Hurewicz's Conjecture is false.

Hurewicz's Conjecture

X is σ -compact if and only if X is $U_{fin}(O, \Gamma)$.

Theorem (Just, Miller, Scheepers, Szeptycki)

Hurewicz's Conjecture is false.

In the proof we consider the following two cases:

We say that $X = \{ x_{\alpha} : \alpha < \mathfrak{b} \} \subseteq [\omega]^{\omega}$ is a \mathfrak{b} -scale, if

- X is unbounded with respect to \leq^* ;
- **2** For all $\alpha, \beta < \mathfrak{b}$, if $\alpha < \beta$ then $x_{\alpha} \leq^* x_{\beta}$.

We say that $X = \{ x_{\alpha} : \alpha < \mathfrak{b} \} \subseteq [\omega]^{\omega}$ is a \mathfrak{b} -scale, if

- X is unbounded with respect to \leq^* ;
- **2** For all $\alpha, \beta < \mathfrak{b}$, if $\alpha < \beta$ then $x_{\alpha} \leq^* x_{\beta}$.

Fact

There exists a b-scale (in ZFC).

We say that $X = \{ x_{\alpha} : \alpha < \mathfrak{b} \} \subseteq [\omega]^{\omega}$ is a \mathfrak{b} -scale, if

- X is unbounded with respect to \leq^* ;
- **2** For all $\alpha, \beta < \mathfrak{b}$, if $\alpha < \beta$ then $x_{\alpha} \leq^* x_{\beta}$.

Fact

There exists a b-scale (in ZFC).

Theorem (Bartoszyński, Shelah)

Let X be a \mathfrak{b} -scale. Then $X \cup Fin$ is Hurewicz but not σ -compact.

Assume that $\mathfrak{b} \leq cov(\mathcal{M})$. Let X be a \mathfrak{b} -scale. Then $X \cup Fin$ is Rothberger.

Assume that $\mathfrak{b} \leq cov(\mathcal{M})$. Let X be a \mathfrak{b} -scale. Then $X \cup Fin$ is Rothberger.

Theorem (Tsaban, Weiss, Bartoszyński)

Assume that $\mathfrak{b} \leq \operatorname{cov}(\mathcal{M})$. Let X be a \mathfrak{b} -scale. Then $(X \cup \operatorname{Fin})^n$ is Rothberger for each $n \in \omega$.

Scheepers Diagram

Scheepers Diagram

Problem

Let X be a \mathfrak{b} -scale. Is $X \cup \operatorname{Fin} S_1(\Gamma, \Omega)$?

Let X be a space. By $C_p(X)$ we denote the set of all continuous functions $f: X \to \mathbb{R}$ endowed with the topology of pointwise convergence that is the topology with the following subbase

$$S(x,U) = \{f \in C_p(X) : f(x) \in U\}$$

where $x \in X$ and U is an open subset of \mathbb{R} .

Fact

Let { $(f_{n,m})_{m\in\omega} : n \in \omega$ } be a family of sequences of continuous functions such that $(f_{n,m})_{m\in\omega}$ converges pointwise to 0 for each natural n. If X is $S_1(\Gamma, \Omega)$ then for each n there exists m_n , such that $0 \in cl\{f_{n,m_n} : n \in \omega\}$.

Fact

Let { $(f_{n,m})_{m\in\omega} : n \in \omega$ } be a family of sequences of continuous functions such that $(f_{n,m})_{m\in\omega}$ converges pointwise to 0 for each natural n. If X is $S_1(\Gamma, \Omega)$ then for each n there exists m_n , such that $0 \in cl \{ f_{n,m_n} : n \in \omega \}$.

Theorem

Let X be a \mathfrak{b} -scale. Then $X \cup \operatorname{Fin} is S_1(\Gamma, \Omega)$.

Definition

For $a, b \in [\omega]^{\omega}$ we say that $a \leq_F b$ if $\{n \in \omega : a(n) \leq b(n)\} \in F$.

Definition

For
$$a, b \in [\omega]^{\omega}$$
 we say that $a \leq_F b$ if $\{n \in \omega : a(n) \leq b(n)\} \in F$.

Definition

Let $F \subseteq [\omega]^{\omega}$ be a filter. We define $\mathfrak{b}(F)$ as the minimal cardinality of an unbounded set in $[\omega]^{\omega}$ with respect to \leq_F .

Definition

For
$$a, b \in [\omega]^{\omega}$$
 we say that $a \leq_F b$ if $\{n \in \omega : a(n) \leq b(n)\} \in F$.

Definition

Let $F \subseteq [\omega]^{\omega}$ be a filter. We define $\mathfrak{b}(F)$ as the minimal cardinality of an unbounded set in $[\omega]^{\omega}$ with respect to \leq_F .

Definition

We say that
$$X = \{ x_{\alpha} : \alpha < \mathfrak{b}(F) \} \subseteq [\omega]^{\omega}$$
 is an *F-scale*, if

- X is unbounded with respect to \leq_F ;
- **2** For all $\alpha, \beta < \mathfrak{b}(F)$, if $\alpha < \beta$ then $x_{\alpha} \leq_{F} x_{\beta}$.

Definition

For
$$a, b \in [\omega]^{\omega}$$
 we say that $a \leq_F b$ if $\{n \in \omega : a(n) \leq b(n)\} \in F$.

Definition

Let $F \subseteq [\omega]^{\omega}$ be a filter. We define $\mathfrak{b}(F)$ as the minimal cardinality of an unbounded set in $[\omega]^{\omega}$ with respect to \leq_F .

Definition

We say that
$$X = \{ x_{\alpha} : \alpha < \mathfrak{b}(F) \} \subseteq [\omega]^{\omega}$$
 is an *F-scale*, if

- X is unbounded with respect to \leq_F ;
- **2** For all $\alpha, \beta < \mathfrak{b}(F)$, if $\alpha < \beta$ then $x_{\alpha} \leq_{F} x_{\beta}$.

Remark

$$\mathfrak{b}$$
-scale = cF-scale

Theorem (Tsaban, Zdomskyy)

Let $F \subseteq [\omega]^{\omega}$ be a filter and X be an F-scale. Then $(X \cup Fin)^n$ is Menger for each $n \in \omega$.

Theorem (Tsaban, Zdomskyy)

Let $F \subseteq [\omega]^{\omega}$ be a filter and X be an F-scale. Then $(X \cup Fin)^n$ is Menger for each $n \in \omega$.

Theorem (Szewczak, Tsaban, Zdomskyy)

Assume that $\mathfrak{d} \leq \mathfrak{r}$ and \mathfrak{d} is regular. Then there are ultrafilters U, \tilde{U}, U -scale X and \tilde{U} -scale Y such that $(X \cup \operatorname{Fin}) \times (Y \cup \operatorname{Fin})$ is not Menger.

Let X be an F-scale and Y be $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Let X be an F-scale and Y be $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Remark

Sierpiński set is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$.

Let X be an F-scale and Y be $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Remark

Sierpiński set is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$.

Corollary

Let F be a filter and X be an F-scale. Then $(X \cup Fin)^n$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Let X be an F-scale and Y be $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Remark

Sierpiński set is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$.

Corollary

Let F be a filter and X be an F-scale. Then $(X \cup Fin)^n$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Corollary

Let X be a b-scale. Then $(X \cup \operatorname{Fin})^n$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

We say that X is \mathfrak{d} -concentrated if $|X| \ge \mathfrak{d}$ and there exists a countable set $A \subseteq X$ such that for each open set U containing A, $|X \setminus U| < \mathfrak{d}$.

We say that X is \mathfrak{d} -concentrated if $|X| \ge \mathfrak{d}$ and there exists a countable set $A \subseteq X$ such that for each open set U containing A, $|X \setminus U| < \mathfrak{d}$.

Theorem

In the Miller model, the product of two sets that are $\mathfrak{d}\text{-concentrated}$ is $S_1(\Gamma,\Omega).$

Let X be an F-scale and Y is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Let X be an F-scale and Y is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Problem

Let X be an F-scale and Y be $S_1(\Gamma, \Gamma)$. Is $(X \cup Fin) \times Y S_1(\Gamma, \Omega)$?

Let X be an F-scale and Y is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Problem

Let X be an F-scale and Y be $S_1(\Gamma, \Gamma)$. Is $(X \cup Fin) \times Y S_1(\Gamma, \Omega)$?

We cannot replace the assumption that Y is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$ by the assumption that Y is $S_1(\Omega_{Bor}, \Omega_{Bor})$.

Let X be an F-scale and Y is $S_1(\Gamma_{Bor}, \Gamma_{Bor})$. Then $(X \cup Fin)^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.

Problem

Let X be an F-scale and Y be $S_1(\Gamma, \Gamma)$. Is $(X \cup Fin) \times Y S_1(\Gamma, \Omega)$?

We cannot replace the assumption that Y is $S_1(\Gamma_{\rm Bor}, \Gamma_{\rm Bor})$ by the assumption that Y is $S_1(\Omega_{\rm Bor}, \Omega_{\rm Bor})$.

Proposition

Assume that $cov(\mathcal{M}) = c$. Then there are ultrafilters U, \tilde{U}, U -scale X and \tilde{U} -scale Y such that $X \cup Fin$ and $Y \cup Fin$ are $S_1(\Omega_{Bor}, \Omega_{Bor})$ but $(X \cup Fin) \times (Y \cup Fin)$ is not Menger.

Proposition

It is consistent with CH that there exists a set Y satisfying $S_1(\Omega_{\mathrm{Bor}}, \Omega_{\mathrm{Bor}})$ and \mathfrak{b} -scale X such that $(X \cup \mathrm{Fin}) \times Y$ is not Menger.

We say that $X \subseteq [\omega]^{\omega}$ is κ -fin-unbounded if $|X| \ge \kappa$ and for each $d \in [\omega]^{\omega}$ there exits $S \subseteq X$ with $|S| < \kappa$ such that for every finite set $F \subseteq X \setminus S$ the union of F omits infinitely many intervals of d.

We say that $X \subseteq [\omega]^{\omega}$ is κ -fin-unbounded if $|X| \ge \kappa$ and for each $d \in [\omega]^{\omega}$ there exits $S \subseteq X$ with $|S| < \kappa$ such that for every finite set $F \subseteq X \setminus S$ the union of F omits infinitely many intervals of d.

Theorem

Let X be a κ -fin unbounded set where $\kappa \leq \mathfrak{d}$ and Y is $S_1(\Gamma_{\mathrm{Bor}}, \Gamma_{\mathrm{Bor}})$. Then $(X \cup \mathrm{Fin})^n \times Y$ is $S_1(\Gamma, \Omega)$ for each $n \in \omega$.