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Remark
We only consider subspaces of P(ω).

Definition
We say that an open cover U of X (such that X /∈ U) is

1 a γ-cover, if it is infinite and for each x ∈ X the set
{U ∈ U : x ̸∈ U } is finite;

2 an ω-cover, if for each finite F ⊆ X there exists U ∈ U , such
that F ⊆ U.
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For a space, let A and B be any of the families O, Γ, Ω of all open
covers, γ-covers, and ω-covers, respectively, of that space. Define

S1(A,B): for each sequence U0,U1, . . . ∈ A, there are sets
U0 ∈ U0,U1 ∈ U1, . . . such that {Un : n ∈ ω } ∈ B,

Sfin(A,B): for each sequence U0,U1, . . . ∈ A, there are finite sets
F0 ⊆ U0,F1 ⊆ U1, . . . such that

⋃
n∈ω Fn ∈ B,

Ufin(A,B): for each sequence U0,U1, . . . ∈ A, there are finite sets
F0 ⊆ U0,F1 ⊆ U1, . . . such that {

⋃
Fn : n ∈ ω } ∈ B.
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Scheepers Diagram

Hurewicz Menger

b Ufin(O, Γ) Sfin(Γ,Ω) Ufin(O,Ω) Sfin(O,O) d

b S1(Γ, Γ) d S1(Γ,Ω) S1(Γ,O)

Sfin(Ω,Ω)

S1(Ω, Γ) S1(Ω,Ω) S1(O,O) cov(M)

cov(M) Rothberger

Scheepers Diagram
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Hurewicz property Ufin(O, Γ)

Theorem
Each σ-compact space is Ufin(O, Γ).

Proof.
Since X is σ-compact, there exists a sequence of increasing
compact spaces Xn, such that X =

⋃∞
n=0 Xn. Let U0,U1, . . . be a

sequence of open covers of X (we assume that each cover does not
contain X ). Then Un = {Un,m : m ∈ ω } is a cover of Xn for each
natural n. By compactness we find mn, such that Xn ⊆

⋃mn
i=0 Un,i .

Let Un :=
⋃mn

i=0 Un,i . Then {Un : n ∈ ω } is a γ-cover of X .
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Hurewicz’s Conjecture

X is σ-compact if and only if X is Ufin(O, Γ).

Theorem (Just, Miller, Scheepers, Szeptycki)

Hurewicz’s Conjecture is false.

In the proof we consider the following two cases:
1 b > ω1;
2 b = ω1.
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Definition
We say that X = { xα : α < b } ⊆ [ω]ω is a b-scale, if

1 X is unbounded with respect to ≤∗;
2 For all α, β < b, if α < β then xα ≤∗ xβ .

Fact
There exists a b-scale (in ZFC).

Theorem (Bartoszyński, Shelah)

Let X be a b-scale. Then X ∪ Fin is Hurewicz but not σ-compact.
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Rothberger property S1(O,O)

Theorem
Assume that b ≤ cov(M). Let X be a b-scale. Then X ∪ Fin is
Rothberger.

Theorem (Tsaban, Weiss, Bartoszyński)

Assume that b ≤ cov(M). Let X be a b-scale. Then (X ∪ Fin)n is
Rothberger for each n ∈ ω.
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Scheepers Diagram

Hurewicz Menger

b Ufin(O, Γ) Sfin(Γ,Ω) Ufin(O,Ω) Sfin(O,O) d
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Problem
Let X be a b-scale. Is X ∪ Fin S1(Γ,Ω)?
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The space Cp(X )

Let X be a space. By Cp(X ) we denote the set of all continuous
functions f : X → R endowed with the topology of pointwise
convergence that is the topology with the following subbase

S(x ,U) = { f ∈ Cp(X ) : f (x) ∈ U }

where x ∈ X and U is an open subset of R.
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Fact
Let { (fn,m)m∈ω : n ∈ ω } be a family of sequences of continuous
functions such that (fn,m)m∈ω converges pointwise to 0 for each
natural n. If X is S1(Γ,Ω) then for each n there exists mn, such
that 0 ∈ cl{ fn,mn : n ∈ ω }.

Theorem
Let X be a b-scale. Then X ∪ Fin is S1(Γ,Ω).
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Let F ⊆ [ω]ω be a filter. By cF we denote the filter of all cofinite
subsets of ω.

Definition
For a, b ∈ [ω]ω we say that a ≤F b if { n ∈ ω : a(n) ≤ b(n) } ∈ F .

Definition
Let F ⊆ [ω]ω be a filter. We define b(F ) as the minimal cardinality
of an unbounded set in [ω]ω with respect to ≤F .

Definition
We say that X = { xα : α < b(F ) } ⊆ [ω]ω is an F -scale, if

1 X is unbounded with respect to ≤F ;
2 For all α, β < b(F ), if α < β then xα ≤F xβ .

Remark
b-scale = cF-scale
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Theorem (Tsaban, Zdomskyy)

Let F ⊆ [ω]ω be a filter and X be an F -scale. Then (X ∪ Fin)n is
Menger for each n ∈ ω.

Theorem (Szewczak,Tsaban, Zdomskyy)

Assume that d ≤ r and d is regular. Then there are ultrafilters
U, Ũ, U-scale X and Ũ-scale Y such that (X ∪ Fin)× (Y ∪ Fin) is
not Menger.
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Theorem
Let X be an F -scale and Y be S1(ΓBor, ΓBor). Then
(X ∪ Fin)n × Y is S1(Γ,Ω) for each n ∈ ω.

Remark
Sierpiński set is S1(ΓBor, ΓBor).

Corollary

Let F be a filter and X be an F -scale. Then (X ∪ Fin)n is S1(Γ,Ω)
for each n ∈ ω.

Corollary

Let X be a b-scale. Then (X ∪ Fin)n is S1(Γ,Ω) for each n ∈ ω.
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Definition
We say that X is d-concentrated if |X | ≥ d and there exists a
countable set A ⊆ X such that for each open set U containing A,
|X \ U| < d.

Theorem
In the Miller model, the product of two sets that are d-concentrated
is S1(Γ,Ω).

Michał Pawlikowskik Scales and combinatorial covering properties



Definition
We say that X is d-concentrated if |X | ≥ d and there exists a
countable set A ⊆ X such that for each open set U containing A,
|X \ U| < d.

Theorem
In the Miller model, the product of two sets that are d-concentrated
is S1(Γ,Ω).

Michał Pawlikowskik Scales and combinatorial covering properties



Counterexamples

Theorem
Let X be an F -scale and Y is S1(ΓBor, ΓBor). Then
(X ∪ Fin)n × Y is S1(Γ,Ω) for each n ∈ ω.

Problem
Let X be an F -scale and Y be S1(Γ, Γ). Is (X ∪Fin)×Y S1(Γ,Ω)?

We cannot replace the assumption that Y is S1(ΓBor, ΓBor) by the
assumption that Y is S1(ΩBor,ΩBor).

Proposition

Assume that cov(M) = c. Then there are ultrafilters U, Ũ, U-scale
X and Ũ-scale Y such that X ∪ Fin and Y ∪ Fin are
S1(ΩBor,ΩBor) but (X ∪ Fin)× (Y ∪ Fin) is not Menger.
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Counterexamples

Proposition
It is consistent with CH that there exists a set Y satisfying
S1(ΩBor,ΩBor) and b-scale X such that (X ∪ Fin)× Y is not
Menger.
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κ-fin unbounded sets

Definition
We say that X ⊆ [ω]ω is κ-fin-unbounded if |X | ≥ κ and for each
d ∈ [ω]ω there exits S ⊆ X with |S | < κ such that for every finite
set F ⊆ X \ S the union of F omits infinitely many intervals of d .

Theorem
Let X be a κ-fin unbounded set where κ ≤ d and Y is
S1(ΓBor, ΓBor). Then (X ∪ Fin)n × Y is S1(Γ,Ω) for each n ∈ ω.
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