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Girth of a Graph

Definition
The girth of a finite graph is defined as the length of its shortest non-trivial
cycle (non-backtracking closed circuit). For a tree, the girth is always
defined to be infinite.
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Girth of a Group

Given a finitely generated group G.

XpGq :“ the set of all finite non-empty subsets of G which generates G.

girthpG,Xq “

tlength of the shortest cycle in the CaypG,Xq with respect to Xu.

The girth of G is:

girthpGq “ sup
XPXpGq

tgirthpCaypG,Xqqu.
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Groups with finite girth:
1 Z{nZ.

2 finite groups.
3 (Schleimer) Non-cyclic groups satisfying a law, i.e. there exists

wpx1, x1, . . . , xkq P Fk such that @g1, g2, . . . , gk P G,

wpg1, g2, . . . , gkq “ 1.

1 Non-cyclic abelian groups (satisfy the commutator law rx1, x2s).
2 Nilpotent groups.
3 Solvable groups.

Groups with infinite girth:
1 Z.
2 Any non-abelian free group Fk, k ě 2.
3 (Akhmedov) SLpn,Zq, n ě 2.
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Girth of proper HNN extensions

Theorem (Akhmedov- M., 2023)
If A,B are proper isomorphic subgroups of a finitely generated group G
then girthpΓq “ 8, where Γ “ pG,A,B, tq is the HNN extension of G with
stable letter t.

G “ xS|Ry

Γ “ pG,A,B, tq “ xS, t|R, t´1at “ ϕpaqy where ϕ : A Ñ B is an
isomorphism.
Key steps in the proof:

1 Construct a generating set S of G disjoint from A and B.
2 Use Britton’s Lemma: If a word w P G˚

ϕ can be expressed
w “ g0t

ϵ1g1t
ϵ2 . . . tϵn , n ě 1 such that w does not contain a subword

of the form t´1git, gi P A or tgjt´1, gj P B then w ‰ 1 in G˚
ϕ.

3 Britton’s Lemma establishes the existence of F2 for proper HNN
extension.
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Theorem (Akhmedov-M., 2023)
Any HNN extension of non-elementary word hyperbolic group has infinite
girth.

Key ingredients:
Any non-elementary word hyperbolic group has infinite girth.
Generating the ping-pong pair via the boundary action.
For every M ą 0, constructing a sequence of generating set SM such
that girthpΓ, SM q ě M implying girthpΓq “ 8 .
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Schreier girth

1 What is girthpG,Sq “ 8 but D S „S S1 such that girthpG,S1q ă 8?

For S “ ts1, . . . , smu an ordered generating set of a group G, one can
apply the following Schreier transformations (or Schreier moves denoted
S „S S1) to obtain a new generating set S1 of G

Switching si with sj for some i ‰ j,

S “ ts1, s2, . . . , si, . . . , sj , . . . , smu ÞÑ ts1, s2, . . . , sj , . . . , si, . . . , smu “ S1.

Replacing si with s´1
i for some i P t1, 2, . . .mu.

Replacing si with sisj for some i ‰ j and i, j P t1, 2, . . . ,mu.
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Primitive elements

Definition

Fix m ě dpGq, where dpGq denotes the minimal cardinality of the
generating set of G. Let G “ xS0y, be a finitely generated group, where
S0 “ tg1, g2, . . . , gmu is a fixed generating set. We define inductively the
subsets Rn, n ě 0 of G as

R0 “ tS0u,Rn`1 “ tS|xSy “ G, |S| “ m, DS1 P Rn such that S „S S1u

where S „S S1 means S1 is obtained from S by applying Schreier
transformation. An element x P G is primitive if there exists S P Yně0Rn

such that x P S.

Definition
We define the nth step primitive elements of G as

Pn “ tx P G | x is primitive such that DS P Rn with x P Su

Pratyush Mishra (WFU) SUMTOPO 2024 July 12, 2024 9 / 22



Examples

1 Consider the free group F2 “ xx, yy with the fixed genereating set
tx, yu.

P1 “ txny, xny´1, ynx, ynx´1u

P2 “ tpxnyqmx, pxny´1qmx, pynxqmy, pynx´1qmy, . . . u

for any integer n,m P Z.
2 tx, yu „S tx, xnyu „S tpxnyqmx, xnyu.

3 The commutator rx, ys is not a primitive element.
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Motivating example of Platonov and Potapchik

Definition
A square matrix A is said to be unipotent if for some integer n,
pA ´ Iqn “ 0.

Example: Platonov and Potapchik constructed the following 4ˆ 4 matrices,

X “

»

—

—

–

1 0 0 0
0 1 0 0
1 0 1 0
0 ´1 0 1

fi

ffi

ffi

fl

, Y “

»

—

—

–

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

fi

ffi

ffi

fl

. (1)

For all integers n, XnY is unipotent.
However, Y XX is not unipotent.
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Conjecture (Platonov and Potapchik, 2000)

For a given linear group G “ xSy, with a fixed finite generating set S, if all
the primitive elements of G are unipotent then is the group G necessarily
unipotent?

Theorem (Platonov and Potapchik, 2000)
For any non-abelian free group Fn, n ě 3, let

ϕ : AutpFnq Ñ GLpm,Cq,

be a finite-dimensional representation of AutpFnq. Assume that all the
images ϕpxq, where x is a primitive element of InnpFnq are unipotent and
the number of Jordan blocks in ϕpxq does not exceed n, then the image
ϕpInnpFnqq is unipotent.
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Rephrasing the conjecture for group actions

For G “ xSy, |S| ă 8 and S fixed. Let G acts on some manifold X, then
for any for g P G, define,

Fixpgq “ tx P X | g.x “ xu.

Question (1)

If P acts freely (without fixed points) on X, then is it true that G acts
freely?

Question (2)

If the Fixpsq ‰ H, for all s P P, then is it true that Fixpgq ‰ H, for all
g P G?

Question (3)

What if P is replaced by P1 in Question p2q?
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Rephrasing the conjecture for group actions

For G “ xSy, |S| ă 8 and S fixed. Let G acts on some manifold X, then
for any for g P G, define,

Fixpgq “ tx P X | g.x “ xu.

Question (1)

If P acts freely (without fixed points) on X, then is it true that G acts
freely?

Question (2)

If the Fixpsq ‰ H, for all s P P, then is it true that Fixpgq ‰ H, for all
g P G?

Question (3)

What if P is replaced by P1 in Question p2q?

Pratyush Mishra (WFU) SUMTOPO 2024 July 12, 2024 13 / 22



Rephrasing the conjecture for group actions

For G “ xSy, |S| ă 8 and S fixed. Let G acts on some manifold X, then
for any for g P G, define,

Fixpgq “ tx P X | g.x “ xu.

Question (1)

If P acts freely (without fixed points) on X, then is it true that G acts
freely?

Question (2)

If the Fixpsq ‰ H, for all s P P, then is it true that Fixpgq ‰ H, for all
g P G?

Question (3)

What if P is replaced by P1 in Question p2q?

Pratyush Mishra (WFU) SUMTOPO 2024 July 12, 2024 13 / 22



Results

(M., 2024) We study Questions (1),(2), and (3) for various group actions:
1 Aff`pRq ñ R: Q.1 (positive) and Q.3 (negative).

2 SLp2,Rq ñ H2: Proved that it is impossible to answer Q.1, Q.2, and
Q.3.

3 PL`pIq ñ I: Q.3 (negative).
4 GLp2,Rq ñ RP 1: Q.3 (negative).

We believe there do exist examples of non-trivial group actions
answering positively Q.2. This is part of an ongoing work!
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Counterexample for Q.3: PL`pIq ñ I

g

f

1

10

1 All first step primitive elements fixes in xf, gy acts freely but xf, gy

does not act freely.
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Counterexample: GLp2,Rq ñ RP 1

A “

„

0.13 0.95
0 1.9

ȷ

, B “

„

0.15 0
´0.06 1.9

ȷ

.

1 Similar constructions can be arranged in higher dimensions for
GLpn ` 1,Rq action on RPn!
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Proposition (M.,2024)
There exists a subgroup Γ ď Homeo`pIq such that all the primitive
elements of Γ act freely but the entire group doesn’t act freely.
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Nielsen Girth

For a given generating set S “ ts1, . . . , snu of a group G, one can apply
the following Nielsen moves to obtain a new generating set S1 of G:

Replacing sk with s˘1
j sk for some k ‰ j and j, k P t1, 2, . . . , nu i.e.,

S “ ts1, s2, . . . , sk, . . . , snu „N ts1, s2, . . . , s
˘
j sk, . . . , snu “ S1.

Replacing sk with sks
˘1
j i.e.,

S “ ts1, s2, . . . , sk, . . . , snu „N ts1, s2, . . . , sks
˘
j , . . . , snu “ S1.
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We write S1 „N S to denote that S1 is obtained from S by applying
finitely many Nielsen move.

Definition
The k-step Nielsen girth of a group G, denoted Nk-girthpGq is defined as,

Nk-girthpGq “ inf
xSy“G,|S|“k

"

sup
xS1y“G,S„NS1

girth (CaypG,S1qq

*

,

k ě dpGq, where dpGq is the cardinality of the minimal generating set of G.
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Some immediate properties

Given G “ xSy, k ě dpGq where dpGq is the cardinality of the minimal
generating set of G.

1

Nk-girthpGq “ 8 ùñ Sk-girthpGq “ 8 ùñ girthpGq “ 8.

2 For groups satisfying a law,

Nk-girthpGq ă 8,Sk-girthpGq ă 8.

3 Let N �G such that G{N is not cyclic then

Sk-girthpG{Nq “ 8 ùñ girthpGq “ 8.

However, the converse of (1) is not true in general, as our next result gives
a class of counterexamples.
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Groups with girthpGq “ 8 but finite Nk-girth(G)

Proposition (M.,2024)
For n ě 2, the group Γn defined as

Γn “ xa, b|ra, bsn “ 1y, (2)

has finite N2-girth but girthpΓnq “ 8.

Idea of proof:
1 If S „N S1 then for any distinct x, y P S and x1, y1 P S1 with

|S| “ |S1| “ 2, we have either rx, ys “ rx1, y1s or rx, ys “ g´1rx1, y1sg.

2 ordprx, ysnq is atmost 4n. Hence, N2-girthpΓnq ă 8.
3 girthpΓnq “ 8 follows from classification of virtually solvable

subgroups of 1-relator group.
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THANK YOU
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