On $\omega_{\mathcal{N}_{\mathcal{T}}}$ -limit sets of discrete dynamical systems

Michaela Záškolná

Mathematical Institute, Silesian University in Opava, Czech republic

Summer Conference on Topology and its Applications, July 2024

< □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

2 Introduction

э

→

Let (X, T) be a dynamical system, where X is a nonvoid compact metric space and $T: X \to X$ is a surjective continuous map. Set A is *positively invariant* if $TA \subset A$ and *strongly invariant*, if TA = A. A system (X, T) is *topologically transitive* if for all opene $U, V \subset X$ exists $n \in \mathbb{N} : U \cap T^{-n}(V) \neq \emptyset$. A system (X, T) is *totally transitive* if (X, T^n) is transitive for all n > 0. A system (X, T) is *weakly mixing* if $(X \times X, T \times T)$ is topologically transitive.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Furstenberg family

We denote by $\mathcal{P} = \mathcal{P}(\mathbb{Z}_+)$ the set of all subsets of \mathbb{Z}_+ . A subset \mathcal{F} of \mathcal{P} is a *family*, if

 $F_1 \subset F_2$ and $F_1 \in \mathcal{F} \Rightarrow F_2 \in \mathcal{F}$.

We denote by ${\cal B}$ the family of all infinite subsets of $\mathbb{Z}_+.$ The *dual family* of ${\cal F}$ is

$$k\mathcal{F}:=\{F\in\mathcal{P}:F\cap F'
eq \emptyset ext{ for any }F'\in\mathcal{F}\}.$$

A family \mathcal{F} is proper if $\mathbb{Z}_+ \in \mathcal{F}$ and $\emptyset \in \mathcal{F}$. A *filter* \mathcal{F} is a proper family closed under intersection, that is,

$$F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F}.$$

A filter is *free* if the intersection of all its elements is empty.

< ロ > < 同 > < 回 > < 回 > < 回 > <

For any $F \in \mathcal{P}$ we will have $T^F x := \{T^i x : i \in F\}$. We can define the *meeting time* for a point x and each subset $G \in X$ as

$$N_T(x,G) = \{n \in \mathbb{Z}_+ : T^n x \in G\},\$$

similarly the *meeting time* of two opene subsets U, V of X as

$$N_T(U,V) = \{n \in \mathbb{Z}_+ : U \cap T^{-n}V \neq \emptyset\} = \{n \in \mathbb{Z}_+ : T^nU \cap V \neq \emptyset\}.$$

We define the ω -*limit set* of the point $x \in X$ as the set

$$\omega_{\mathcal{T}}(x) := \bigcap_{n=1}^{\infty} \overline{\{\mathcal{T}^{k}x : k \ge n\}}$$

= $\{z \in X : N_{\mathcal{T}}(x, G) \in \mathcal{B} \text{ for every neighborhood } G \text{ of } z\}$

and we can recall that $\omega_T(x)$ is nonvoid, closed and strongly invariant.

< □ > < □ > < □ > < □ > < □ > < □ >

Let's have \mathcal{F} a family and $x \in X$, the ω -limit set of x with respect to the family \mathcal{F} defined as

$$\omega_{\mathcal{F}}(x) := \bigcap_{F \in \mathcal{F}} \overline{T^F x}$$

= $\{z \in X : N_T(x, G) \in kF \text{ for every neighborhood } G \text{ of } z\}.$

< ∃⇒

- ∢ /⊐ >

Introduction

Proposition:

If a family \mathcal{F} is free, then $\omega_{\mathcal{F}}(x) \subset \omega_{\mathcal{T}}(x)$ for any point $x \in X$ and if (X, \mathcal{T}) has a point, that is not recurrent, then the converse implication is true.

Example

A map where
$$\omega_{\mathcal{F}}(x) \not\subset \omega_{\mathcal{T}}(x)$$
:
 $\mathcal{F} = \{A \in \mathbb{Z}_+ : 0 \in A\}, \ \mathcal{T} : [0,1] \rightarrow [0,1], \ \mathcal{T}(x) = \sqrt{x}$
 $\omega_{\mathcal{T}}(x) = \{1\} \text{ for } x \in (0,1], \ \omega_{\mathcal{T}}(x) = \{0\} \text{ for } x = 0$
and $\omega_{\mathcal{N}_{\mathcal{T}}}(x) = \{1, x\}.$

Let \mathcal{N}_T be the set of all subsets of \mathbb{Z}_+ containing some $N_T(U, V)$, where U, V are opene subsets of X. A system (X, T) is *transitive compact* if the $\omega_{\mathcal{N}_T}(x)$ -limit set is nonempty for any $x \in X$ or in other words

$$\forall x \in X \exists z \in X : N_T(x, G) \cap N_T(U, V) \neq \emptyset$$

for any neighborhood G of z and any opene subsets U, V in X.

weak mixing \Rightarrow transitive compactness \Rightarrow topological transitivity

Proposition:

 $\mathcal{N}_{\mathcal{T}}$ is a free family.

Proof: We suppose there exists $p \in \bigcap_{F \in \mathcal{N}_T} F$, which is the same as

$$p \in N_T(U, V) = \{n \in \mathbb{Z}_+ : U \cap T^{-n}V \neq \emptyset\}$$

and using the Haussdorf property we show that we can always find U, V such that $U \cap T^{-p}V = \emptyset$, leading to a contradiction.

Corollary:

It holds $\omega_{\mathcal{N}_{\mathcal{T}}} \subseteq \omega_{\mathcal{T}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

System, that is topologically transitive but not weakly mixing:

M. Záško	Iná (Sil	lesian U	niversity)
----------	----------	----------	------------

< 行

э

Example

 $T: \mathbb{S} \to \mathbb{S}$ $T_{ heta}(x) = x + heta, \quad heta \in \mathbb{I}$

It holds

 $\omega_T(x) = \mathbb{S}$ for all $x \in \mathbb{S}$.

However

$$\omega_{\mathcal{N}_{\mathcal{T}}}(x) = \emptyset$$
 for all $x \in \mathbb{S}$

because we can always find x, G neighborhood of x and opene sets U, V such that

$$N_T(x,G) \cap N_T(U,V) = \emptyset$$

|--|

イロト 不得下 イヨト イヨト 二日

Example

$$\sigma: \sum \to \sum, \text{ where } \sum = \{0,1\}^{\mathbb{N}}$$
$$\sigma(x_0, x_1, x_2, \dots) = (x_1, x_2, x_3, \dots)$$
$$y \in \omega_T(x) \Rightarrow \exists \{n_k\} \text{ growing sequence such that } T^{n_k}x \to y.$$
Let U, V be opene sets and G neighborhood of y .
$$\exists m \in \mathbb{N} \text{ such that } \{m, m+1, m+2, \dots\} \subset N_T(U, V) \text{ and therefore } N_T(x, G) \cap N_T(U, V) \neq \emptyset \Rightarrow y \in \omega_{\mathcal{N}_T}(x).$$
$$\omega_{\mathcal{N}_T}(x) = \omega_T(x).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Every system, where exists x such that $\omega_{\mathcal{N}_{\mathcal{T}}}(x) \neq \emptyset$, is transitive, because

 $\omega_{\mathcal{N}_{\mathcal{T}}}(x) \neq \emptyset \Leftrightarrow N_{\mathcal{T}}(x,G) \cap N_{\mathcal{T}}(U,V) \neq \emptyset$

for G neighborhood of x and U, V nonempty sets. $N_T(U, V) \neq \emptyset$ implies transitivity of the system. The converse doesn't have to be true, as seen in irrational rotation, which is transitive but $\omega_{\mathcal{N}_T}(x) = \emptyset$ for all $x \in X$.

Lemma:

Let (X, T) be a topological dynamical system, x ∈ X and n ≥ 1, then:
(i) ω_{N_T} is a closed positively invariant set, and if (X, T) is weakly mixing, then ω_{N_T} is strongly invariant.
(ii) ω_{N_T}(x) = ω_{N_T}(Tⁿx)
(iii) ∀i ≥ 0, Tⁱ(ω_{N_Tn}(x)) ⊂ ω_{N_Tn}(Tⁱx) and if T is homeomorphism, ω_{N_Tn}(Tⁱx) = Tⁱ(ω_{N_Tn}(x))

Remark:

We suspect that the property (iii) holds for all continuous surjective maps and that we can leave out the condition of homeomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark:

For ω_T -limit sets holds

$$\omega_{T}(x) = \bigcup_{i=0}^{n-1} \omega_{T^{n}}(T^{i}x)$$

but the analogy is not true for $\omega_{\mathcal{N}_T}$ -limit sets. If we take n=2 and the system from the second example, we choose a point that is transitive under the original system. It holds $\omega_{\mathcal{N}_R}(x) = \frac{1}{2}$ but $\omega_{\mathcal{N}_{R^2}}(x) = \emptyset$ and $\omega_{\mathcal{N}_{R^2}}(Rx) = \emptyset$, therefore

$$\omega_{\mathcal{N}_{\mathcal{R}}}(x) \neq \omega_{\mathcal{N}_{\mathcal{R}^2}}(x) \cup \omega_{\mathcal{N}_{\mathcal{R}^2}}(\mathcal{R}x)$$

Question: [W.Huang, D.Khilko, S.Kolyada, G.Zhang, 2016]

If (X, T) is a weakly mixing system, then does it follow that for any point $x \in X$ there exists a point $y \in X$ such that $\omega_T(x) = \omega_{\mathcal{N}_T}(y)$?

Theorem:

A system (I, T), where I is an interval, is weakly mixing if and only if it is transitive compact.

Proof: Weak mixing implies transitive compactness, so we only have to prove the converse. It is known that if (X, I) is a transitive system on an interval, then one of the following alternatives holds:

- (i) ω_{T^s}(x) = I for every positive integer s, meaning the system is totally transitive.
- (ii) there exist non-degenerate closed intervald J, K with $J \cup K = I$ and $J \cap K = y$, where y is a fixed point of T, such that T(J) = K and T(K) = J.

In the case (ii) the system isn't weakly mixing but neither is it transitive compact, because $\omega_{\mathcal{N}_T} = \emptyset$ with the same reasoning as in the example 2. Therefore we will limit ourselves to the case (i). If $\omega_{T^s}(x) = I$ for every positive integer s, then $\omega_T(x) = I$ for all $x \in I$. If we take two opene intervals $J, K \subset I$ and observe that there exists $k \in \mathbb{Z}_+$ such that $N_T(J, K) \supset \{k + 1, k + 2, k + 3...\}$ and therefore $\omega_{\mathcal{N}_T}(x) = I$ for all $x \in I$ and because $\omega_{\mathcal{N}_T}(x) \neq \emptyset$, the system is transitive compact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary:

From the theorem we can see that on interval it holds that if (X, I) is a weakly mixing system, then $\omega_T(x) = \omega_{\mathcal{N}_T}(x)$ for any $x \in I$.

→

- ∢ /⊐ >

References

- Wen Huang, Danylo Khilko, Sergii Kolyada, Guohua Zhang: Dynamical compactness and sensitivity. J. Differ. Equ. 260 (9) (2016), 6800–6827
- 2 Wen Huang, Danylo Khilko, Sergii Kolyada, Alfred Peris, Guohua Zhang: Finite intersection property and dynamical compactness. J. Differ. Equ. (30) (2018), 1221–1245.