
On ωNT
-limit sets of discrete dynamical systems

Michaela Záškolná
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M. Záškolná (Silesian University) On ωNT
-limit sets SUMTOPO 2024 2 / 22



Definitions

Let (X ,T ) be a dynamical system, where X is a nonvoid compact metric
space and T : X → X is a surjective continuous map.
Set A is positively invariant if TA ⊂ A and strongly invariant, if TA = A.
A system (X ,T ) is topologically transitive if for all opene U,V ⊂ X exists
n ∈ N : U ∩ T−n(V ) ̸= Ø. A system (X ,T ) is totally transitive if (X ,T n)
is transitive for all n > 0. A system (X ,T ) is weakly mixing if
(X × X ,T × T ) is topologically transitive.
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Furstenberg family

We denote by P = P(Z+) the set of all subsets of Z+. A subset F of P is
a family, if

F1 ⊂ F2 and F1 ∈ F ⇒ F2 ∈ F .

We denote by B the family of all infinite subsets of Z+.
The dual family of F is

kF := {F ∈ P : F ∩ F ′ ̸= Ø for any F ′ ∈ F}.

A family F is proper if Z+ ∈ F and Ø ∈ F .
A filter F is a proper family closed under intersection, that is,

F1,F2 ∈ F ⇒ F1 ∩ F2 ∈ F .

A filter is free if the intersection of all its elements is empty.
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For any F ∈ P we will have T F x := {T ix : i ∈ F}. We can define the
meeting time for a point x and each subset G ∈ X as

NT (x ,G ) = {n ∈ Z+ : T nx ∈ G},

similarly the meeting time of two opene subsets U,V of X as

NT (U,V ) = {n ∈ Z+ : U ∩ T−nV ̸= Ø} = {n ∈ Z+ : T nU ∩ V ̸= Ø}.
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We define the ω−limit set of the point x ∈ X as the set

ωT (x) :=
∞⋂
n=1

{T kx : k ≥ n}

= {z ∈ X : NT (x ,G ) ∈ B for every neighborhood G of z}

and we can recall that ωT (x) is nonvoid, closed and strongly invariant.

M. Záškolná (Silesian University) On ωNT
-limit sets SUMTOPO 2024 6 / 22



Let’s have F a family and x ∈ X , the ω-limit set of x with respect to the
family F defined as

ωF (x) :=
⋂
F∈F

T F x

= {z ∈ X : NT (x ,G ) ∈ kF for every neighborhood G of z}.
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Introduction

Proposition:

If a family F is free, then ωF (x) ⊂ ωT (x) for any point x ∈ X and if
(X ,T ) has a point, that is not recurrent, then the converse implication is
true.

Example

A map where ωF (x) ̸⊂ ωT (x):
F = {A ∈ Z+ : 0 ∈ A}, T : [0, 1] → [0, 1], T (x) =

√
x

ωT (x) = {1} for x ∈ (0, 1], ωT (x) = {0} for x = 0
and ωNT

(x) = {1, x}.

0.5 1

0.5

1
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Let NT be the set of all subsets of Z+ containing some NT (U,V ), where
U,V are opene subsets of X .
A system (X ,T ) is transitive compact if the ωNT

(x)-limit set is nonempty
for any x ∈ X or in other words

∀x ∈ X∃z ∈ X : NT (x ,G ) ∩ NT (U,V ) ̸= Ø

for any neighborhood G of z and any opene subsets U,V in X .

weak mixing ⇒ transitive compactness ⇒ topological transitivity
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Proposition:

NT is a free family.

Proof: We suppose there exists p ∈
⋂

F∈NT

F , which is the same as

p ∈ NT (U,V ) = {n ∈ Z+ : U ∩ T−nV ̸= Ø}

and using the Haussdorf property we show that we can always find U,V
such that U ∩ T−pV = Ø, leading to a contradiction.

Corollary:

It holds ωNT
⊆ ωT .
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Example

0.5 1

0.5

1

The tent map is an example of a map that is transitive compact and
weakly mixing. In this system

ωT (x) = ωNT
(x) = X

for all transitive points x ∈ X .
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Example

System, that is topologically transitive but not weakly mixing:

0.5 1

0.5

1

0.5 1
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Example

T : S → S

Tθ(x) = x + θ, θ ∈ I

It holds
ωT (x) = S for all x ∈ S.

However
ωNT

(x) = Ø for all x ∈ S

because we can always find x ,G neighborhood of x and opene sets U,V
such that

NT (x ,G ) ∩ NT (U,V ) = Ø

.
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Example

σ :
∑

→
∑

, where
∑

= {0, 1}N

σ(x0, x1, x2, . . . ) = (x1, x2, x3, . . . )

y ∈ ωT (x) ⇒ ∃{nk} growing sequence such that T nkx → y .
Let U,V be opene sets and G neighborhood of y .
∃m ∈ N such that {m,m + 1,m + 2, . . . } ⊂ NT (U,V ) and therefore
NT (x ,G ) ∩ NT (U,V ) ̸= Ø ⇒ y ∈ ωNT

(x).

ωNT
(x) = ωT (x).
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Properties of ωNT

Every system, where exists x such that ωNT
(x) ̸= Ø, is transitive, because

ωNT
(x) ̸= Ø ⇔ NT (x ,G ) ∩ NT (U,V ) ̸= Ø

for G neighborhood of x and U,V nonempty sets.
NT (U,V ) ̸= Ø implies transitivity of the system. The converse doesn’t
have to be true, as seen in irrational rotation, which is transitive but
ωNT

(x) = Ø for all x ∈ X .

M. Záškolná (Silesian University) On ωNT
-limit sets SUMTOPO 2024 15 / 22



Lemma:

Let (X ,T ) be a topological dynamical system, x ∈ X and n ≥ 1, then:

(i) ωNT
is a closed positively invariant set, and if (X ,T ) is weakly

mixing, then ωNT
is strongly invariant.

(ii) ωNT
(x) = ωNT

(T nx)

(iii) ∀i ≥ 0, T i (ωNTn (x)) ⊂ ωNTn (T
ix) and if T is homeomorphism,

ωNTn (T
ix) = T i (ωNTn (x))

Remark:

We suspect that the property (iii) holds for all continuous surjective maps
and that we can leave out the condition of homeomorphism.
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Remark:

For ωT -limit sets holds

ωT (x) =
n−1⋃
i=0

ωT n(T ix)

but the analogy is not true for ωNT
-limit sets. If we take n=2 and the

system from the second example, we choose a point that is transitive
under the original system. It holds ωNR

(x) = 1
2 but ωNR2 (x) = Ø and

ωNR2 (Rx) = Ø, therefore

ωNR
(x) ̸= ωNR2 (x) ∪ ωNR2 (Rx)
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Transitive compactness

Question: [W.Huang, D.Khilko, S.Kolyada, G.Zhang, 2016]

If (X ,T ) is a weakly mixing system, then does it follow that for any point
x ∈ X there exists a point y ∈ X such that ωT (x) = ωNT

(y)?
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Theorem:

A system (I ,T ), where I is an interval, is weakly mixing if and only if it is
transitive compact.

Proof: Weak mixing implies transitive compactness, so we only have to
prove the converse. It is known that if (X , I ) is a transitive system on an
interval, then one of the following alternatives holds:

(i) ωT s (x) = I for every positive integer s, meaning the system is totally
transitive.

(ii) there exist non-degenerate closed intervald J,K with J ∪ K = I and
J ∩ K = y , where y is a fixed point of T, such that T (J) = K and
T (K ) = J.
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In the case (ii) the system isn’t weakly mixing but neither is it transitive
compact, because ωNT

= Ø with the same reasoning as in the example 2.
Therefore we will limit ourselves to the case (i). If ωT s (x) = I for every
positive integer s, then ωT (x) = I for all x ∈ I . If we take two opene
intervals J,K ⊂ I and observe that there exists k ∈ Z+ such that
NT (J,K ) ⊃ {k + 1, k + 2, k + 3...} and therefore ωNT

(x) = I for all x ∈ I
and because ωNT

(x) ̸= Ø, the system is transitive compact.
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Corollary:

From the theorem we can see that on interval it holds that if (X , I ) is a
weakly mixing system, then ωT (x) = ωNT

(x) for any x ∈ I .
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