Relations Between Symmetric Density and Local Symmetric Connectedness

Nezakat JAVANSHIR and Filiz YILDIZ

38th Summer Conference on Topology and Its Applications

Ankara Yildirim Beyazit University, Faculty of Engineering and Natural Sciences, Ankara-Turkiye

8-12 July 2024

- 1. Basic Definitions
- 2. Local Symmetric Connectedness in T_0 -Quasi-Metric Spaces
- 3. Symmetric Density in T_0 -Quasi-Metric Spaces
- 4. Relations Between Symmetric Density and Local Symmetric Connectedness

38th Summer Conference on Topology and Its Applications Ar

1. Basic Definitions

38th Summer Conference on Topology and Its Applications Ai

Let X be a set and $d:X\times X\longrightarrow [0,\infty)$ be a mapping. Then, d is a $\mathit{quasi-pseudo-metric}$ on X if

(a)
$$d(x,x) = 0$$
 whenever $x \in X$, and
(b) $d(x,z) \le d(x,y) + d(y,z)$ whenever $x, y, z \in X$.

We shall say that (X, d) is a T_0 -quasi-metric space provided that d also satisfies the following condition:

For each $x, y \in X$, d(x, y) = d(y, x) = 0 implies that x = y.

38th Summer Conference on Topology and Its Applications A

Let d be a T_0 -quasi-metric on a set X, then

$$d^{-1}: X \times X \longrightarrow [0,\infty)$$
 defined by $d^{-1}(x,y) = d(y,x)$

whenever $x,y\in X,$ is also a $T_0\mbox{-}quasi-metric,$ called the conjugate $T_0\mbox{-}quasi-metric of \ d.$

38th Summer Conference on Topology and Its Applications Ai

Let d be a T_0 -quasi-metric on a set X, then

$$d^{-1}: X \times X \longrightarrow [0,\infty)$$
 defined by $d^{-1}(x,y) = d(y,x)$

whenever $x,y \in X$, is also a $T_0\mbox{-}quasi-metric,$ called the conjugate $T_0\mbox{-}quasi-metric of \ d.$

If $d = d^{-1}$ then d is a metric on X.

38th Summer Conference on Topology and Its Applications A

For any T_0 -quasi-metric d, also note that

$$d^{s} = \sup\{d, d^{-1}\} = d \lor d^{-1}$$

is a metric and d^{s} is called the symmetrization metric of the $T_{0}\mbox{-}{\rm quasi-metric}\ d.$

Incidentally, we will use the notation τ_{d^s} as the (symmetrization) topology induced by the metric d^s .

38th Summer Conference on Topology and Its Applications Ai

Let (X, d) be a T_0 -quasi-metric space and $x \in X$.

(a)

The point $x \in X$ is called *symmetric point* if d(x, y) = d(y, x) whenever $x \neq y \in X$.

(b)

The point $x \in X$ is called *antisymmetric point* if $d(x, y) \neq d(y, x)$ whenever $x \neq y \in X$.

38th Summer Conference on Topology and Its Applications A

Let (X, d) be a T_0 -quasi-metric space. The pair $(x, y) \in X \times X$ is called *symmetric pair* if d(x, y) = d(y, x).

38th Summer Conference on Topology and Its Applications Ar

Let (X, d) be a T_0 -quasi-metric space. The pair $(x, y) \in X \times X$ is called *symmetric pair* if d(x, y) = d(y, x).

Note

For a T_0 -quasi-metric space (X, d), we take

$$Z_d = \{(x, y) \in X \times X : d(x, y) = d(y, x)\}$$

as the set of symmetric pairs in (X, d). It is clear that the relation Z_d is reflexive and symmetric. Incidentally,

$$Z_d(x) = \{ y \in X : (x, y) \in Z_d \}$$

is called a symmetry set of $x \in X$.

38th Summer Conference on Topology and Its Applications Ar

Let (X, d) be a T_0 -quasi-metric space. The pair $(x, y) \in X \times X$ is called *antisymmetric pair* if $d(x, y) \neq d(y, x)$ whenever $x \neq y$.

38th Summer Conference on Topology and Its Applications Ar

Let (X, d) be a T_0 -quasi-metric space. The pair $(x, y) \in X \times X$ is called *antisymmetric pair* if $d(x, y) \neq d(y, x)$ whenever $x \neq y$.

Definition

Given T_0 -quasi-metric space (X, d), if for each $x, y \in X$, (x, y) is antisymmetric pair, then (X, d) will be called *antisymmetric space* $(d(x, y) = d(y, x) \Rightarrow x = y$ for all $x, y \in X$).

38th Summer Conference on Topology and Its Applications Ai

Example

On the set \mathbb{R} of the reals take $u(x, y) = (x - y) \lor 0$ whenever $x, y \in \mathbb{R}$ (the standard T_0 -quasi-metric on \mathbb{R}). It is easy to verify that u satisfies the conditions of T_0 -quasi-metric, and also (\mathbb{R}, u) is an antisymmetric space.

38th Summer Conference on Topology and Its Applications Ar

Given (X, d) T_0 -quasi-metric space, and $x, y \in X$. Let (x_i, x_{i+1}) be symmetric pairs for $i \in \{0, ..., n-1\}$. In this case, $P_{xy} = P(x = x_0, x_1, ..., x_n = y)$ is called a *symmetric path* from $x = x_0$ to $y = x_n$.

38th Summer Conference on Topology and Its Applications Ar

Given (X, d) T_0 -quasi-metric space, and $x, y \in X$. Let (x_i, x_{i+1}) be symmetric pairs for $i \in \{0, ..., n-1\}$. In this case, $P_{xy} = P(x = x_0, x_1, ..., x_n = y)$ is called a *symmetric path* from $x = x_0$ to $y = x_n$.

Definition

Let (X, d) be a T_0 -quasi-metric space. If for every $x, y \in X$, there exists a symmetric path P_{xy} from x to y, we say x and y are symmetrically connected.

38th Summer Conference on Topology and Its Applications A

The equivalence class of a point $x \in X$ with respect to the symmetric connectedness relation is called the symmetry component of x.

More clearly, if C(x) denotes the symmetric connectedness relation then the symmetry component of $x \in X$ is

 $C(x) = \{y \in X : x \text{ and } y \text{ are symmetrically connected}\}.$

38th Summer Conference on Topology and Its Applications Ar

The equivalence class of a point $x \in X$ with respect to the symmetric connectedness relation is called the symmetry component of x.

More clearly, if C(x) denotes the symmetric connectedness relation then the symmetry component of $x \in X$ is

 $C(x) = \{y \in X : x \text{ and } y \text{ are symmetrically connected}\}.$

Definition

A T_0 -quasi-metric space (X, d) such that C(x) = X for all $x \in X$, is called symmetrically connected.

38th Summer Conference on Topology and Its Applications A

Note.

Let (X, d) be a T_0 -quasi-metric space and C(x) the symmetry component of $x \in X$. If Z_d is transitive then for each $y \in C(x)$, d(x, y) = d(y, x).

38th Summer Conference on Topology and Its Applications Ar

Note.

Let (X, d) be a T_0 -quasi-metric space and C(x) the symmetry component of $x \in X$. If Z_d is transitive then for each $y \in C(x)$, d(x,y) = d(y,x).

Proof. Let $y \in C(x)$. Then there is a symmetric path $P_{xy}(x = x_0, x_1, ..., x_{n-1}, y = x_n)$ from x to y. Therefore $(x, x_1) \in Z_d$, $(x_1, x_2) \in Z_d$, ..., $(x_{n-1}, y) \in Z_d$. Now since Z_d is transitive then $(x, y) \in Z_d$ that is d(x, y) = d(y, x).

38th Summer Conference on Topology and Its Applications Ar Relations Between Symmetric Density and Local Symmetric Connectedness

Corollary

Each metric space is symmetrically connected.

38th Summer Conference on Topology and Its Applications A

Let
$$X = [0, \infty)$$
 and $d: X \times X \longrightarrow [0, \infty)$
$$d(x, y) = \begin{cases} x - y & ; y \le x \\ x + y & ; y > x \end{cases}$$

be a function on X. Thus, d is T_0 -quasi-metric.

38th Summer Conference on Topology and Its Applications A

$$d^{-1}: X \times X \longrightarrow [0, \infty)$$
$$d^{-1}(x, y) = \begin{cases} y - x & ; x \le y \\ x + y & ; x > y \end{cases}$$

is the conjugate of d T_0 -quasi-metric. And

$$d^{s}: X \times X \longrightarrow [0, \infty)$$
$$d^{s}(x, y) = \begin{cases} 0 & ; \ x = y \\ x + y & ; \ x \neq y \end{cases}$$

is the symmetrization metric of d.

38th Summer Conference on Topology and Its Applications Ar

The balls of "0" on (X, d), (X, d^{-1}) and (X, d^{s}) are

$$B_d(0,\varepsilon) = B_{d^{-1}}(0,\varepsilon) = B_{d^s}(0,\varepsilon) = [0,\varepsilon),$$

That is, "0" has the same τ_{d^s} -neighborhood filter on X as

the Euclidean topology.

For $0 \neq x$, we have $B_{d^s}(x, \varepsilon) = \{x\}$, where $\varepsilon > 0$. The topology on $X \setminus \{0\}$ is discrete topology.

38th Summer Conference on Topology and Its Applications Al Relations Between Symmetric Density and Local Symmetric Connectedness

In Star space "0" is symmetric point and for any two $x, y \in X$ there is symmetric path P(x, 0, y) then Star space is symmetrically connected but it is not metric space ($d(1,3) \neq d(3,1)$).

38th Summer Conference on Topology and Its Applications Ar

2. Local Symmetric Connectedness in T_0 -Quasi-Metric Spaces

Definition

A T_0 -quasi-metric space (X, d) is called locally symmetrically connected if C(x) is τ_{d^s} -open for each $x \in X$.

38th Summer Conference on Topology and Its Applications Ar

2. Local Symmetric Connectedness in T_0 -Quasi-Metric Spaces

Definition

A T_0 -quasi-metric space (X, d) is called locally symmetrically connected if C(x) is τ_{d^s} -open for each $x \in X$.

Corollary

If $(\boldsymbol{X},\boldsymbol{d})$ is a metric space then $(\boldsymbol{X},\boldsymbol{d})$ is locally symmetrically connected.

38th Summer Conference on Topology and Its Applications Ar

2. Local Symmetric Connectedness in T₀-Quasi-Metric Spaces

Definition

A T_0 -quasi-metric space (X, d) is called locally symmetrically connected if C(x) is τ_{d^s} -open for each $x \in X$.

Corollary

If $(\boldsymbol{X},\boldsymbol{d})$ is a metric space then $(\boldsymbol{X},\boldsymbol{d})$ is locally symmetrically connected.

Lemma

Each T_0 -quasi-metric space (X, d) such that τ_{d^s} is discrete is locally symmetrically connected.

38th Summer Conference on Topology and Its Applications A

Lemma

Symmetrically connected $T_0\mbox{-}{\rm quasi-metric}$ spaces are locally symmetrically connected.

38th Summer Conference on Topology and Its Applications A

Example

Consider the Sorgenfrey (unbounded) T_0 -quasi-metric space (\mathbb{R}, d) where

$$d(x,y) = \begin{cases} x-y & ; x \ge y \\ 1 & ; y > x \end{cases}$$

The conjugate of d is

$$d^{-1} : \mathbb{R} \times \mathbb{R} \longrightarrow [0, \infty)$$
$$d^{-1}(x, y) = \begin{cases} y - x & ; y \ge x\\ 1 & ; y < x \end{cases}$$

38th Summer Conference on Topology and Its Applications A

And the symmetrization metric of d is

$$d^{s}: \mathbb{R} \times \mathbb{R} \longrightarrow [0, \infty)$$
$$d^{s}(x, y) = \begin{cases} 0 & ; x = y\\ sup\{1, |x - y|\} & ; x \neq y \end{cases}$$

Clearly, $B_{d^s}(x,\varepsilon) = \{x\}$ for $x \in \mathbb{R}$ and $\epsilon > 0$. That is the topology τ_{d^s} is discrete.

38th Summer Conference on Topology and Its Applications Ai

It is easy to verify that the space (\mathbb{R}, d) is not symmetrically connected, since there is no symmetric path between 1 and 3/2.

On the other side the symmetrization topology τ_{d^s} is discrete then (\mathbb{R}, d) is locally symmetrically connected since each symmetry component C(x), $x \in X$ is open w.r.t the discrete topology.

38th Summer Conference on Topology and Its Applications Ar

Proposition

If (X,d) is a locally symmetrically connected T_0 -quasi-metric space and the topological space (X, τ_{d^s}) is connected, then (X,d) is symmetrically connected.

38th Summer Conference on Topology and Its Applications Ar

Proposition

If (X, d) is a locally symmetrically connected T_0 -quasi-metric space and the topological space (X, τ_{d^s}) is connected, then (X, d) is symmetrically connected.

Proof. Note that in a locally symmetrically connected space (X,d), C(x) is τ_{d^s} -clopen for each $x \in X$. Thus C(x) = X by the connectedness of τ_{d^s} and so (X,d) is symmetrically connected.

38th Summer Conference on Topology and Its Applications Ar Relations Between Symmetric Density and Local Symmetric Connectedness

Let (X, d) be a T_0 -quasi-metric space and $A \subseteq X$. If for $x \in X \setminus A$, there exists $a_x \in A$ such that $d(x, a_x) = d(a_x, x)$ then A is called symmetrically-dense in (X, d).

38th Summer Conference on Topology and Its Applications Ai

Let us define a $T_0\text{-quasi-metric }p$ on the set $X=\{1,2,3\}$ via the matrix

$$P = \begin{bmatrix} 0 & 3 & 2 \\ 3 & 0 & 2 \\ 3 & 2 & 0 \end{bmatrix}$$

That is, $P = (p_{ij})$ where $p(i, j) = p_{ij}$ for $i, j \in X$. It is easy to prove that p is a T_0 -quasi-metric on X.

Here note that p(1,2) = p(2,1). Therefore, the subset $A = \{2,3\}$ of X is symmetrically-dense in X. In addition, the subset $B = \{1\}$ is not symmetrically-dense since $p(3,1) \neq p(1,3)$.

38th Summer Conference on Topology and Its Applications

Proposition

Let (X,d) be a $T_0\mbox{-}quasi-metric space with at least two elements and <math display="inline">x\in X$ a symmetric point. In this case,

(a) $\{x\}$ is symmetrically-dense in X.

(b) $X \setminus \{x\}$ is symmetrically-dense in X.

38th Summer Conference on Topology and Its Applications Ar

Let (X,d) be a $T_0\mbox{-}quasi-metric space with at least two elements and <math display="inline">x\in X$ a symmetric point. In this case,

(a) $\{x\}$ is symmetrically-dense in X.

(b) $X \setminus \{x\}$ is symmetrically-dense in X.

Proof.

- (a) By the definition of symmetric point d(x, y) = d(y, x)whenever $y \in X \setminus \{x\}$ Then, $\{x\}$ is symmetrically-dense in X.
- (b) Clearly, y = x whenever $y \in X \setminus X \setminus \{x\}$. Thus, d(x, a) = d(a, x) whenever $a \in X \setminus \{x\}$ since x is symmetric point.

38th Summer Conference on Topology and Its Applications A

Let (X, d) be a T_0 -quasi-metric space with at least two elements and $x \in X$ an antisymmetric point. Then the subsets $\{x\}$ and $X \setminus \{x\}$ cannot be symmetrically-dense in X.

38th Summer Conference on Topology and Its Applications Ar

Let (X, d) be a T_0 -quasi-metric space with at least two elements and $x \in X$ an antisymmetric point. Then the subsets $\{x\}$ and $X \setminus \{x\}$ cannot be symmetrically-dense in X.

Proof. By the definition of antisymmetric point $d(x, y) \neq d(y, x)$ whenever $y \in X \setminus \{x\}$. Then, $\{x\}$ cannot be symmetrically-dense in X.

In a similar way, clearly y = x whenever $y \in X \setminus (X \setminus \{x\})$. Thus, $d(x, a) \neq d(a, x)$ whenever $a \in X \setminus \{x\}$ since x is antisymmetric point. That is, $X \setminus \{x\}$ is not symmetrically-dense. \Box

38th Summer Conference on Topology and Its Applications A

Let (X, d) be a T_0 -quasi-metric space and $A \subseteq X$ symmetrically-dense in X. If $A \subseteq B \subseteq X$ then B is symmetrically-dense in X.

Proof. If $x \in X \setminus B$ then $x \in X \setminus A$. Thus, by regarding the symmetric density of A, there exists $a \in A \subseteq B$ such that d(x, a) = d(a, x). Then B is symmetrically-dense in X.

38th Summer Conference on Topology and Its Applications Ar Relations Between Symmetric Density and Local Symmetric Connectedness

Consider the Star space as follows: On $X=[0,\infty),$ let us take the function

$$d: X \times X \longrightarrow [0, \infty)$$
$$d(x, y) = \begin{cases} x - y & ; y \le x \\ x + y & ; y > x \end{cases}$$

Clearly, the subset $A = \{0\} \subseteq X$ is symmetrically-dense in (X, d)since d(x, 0) = d(0, x) for each $x \in X \setminus A$. Also since $A \subseteq B = \{0, 1\}$ then B is symmetrically-dense in X.

38th Summer Conference on Topology and Its Applications A

Theorem

Let (X, d) be a T_0 -quasi-metric space. If $A \subseteq X$ symmetrically-dense metric subspace in X and Z_d is transitive then d is a metric.

38th Summer Conference on Topology and Its Applications Ar

Theorem

Let (X, d) be a T_0 -quasi-metric space. If $A \subseteq X$ symmetrically-dense metric subspace in X and Z_d is transitive then d is a metric.

Proof. Take $x, y \in X$. We have four cases:

Case 1. If
$$x, y \in A$$
 then $d(x, y) = d(y, x)$.

Case 2. If $x \in A$, $y \notin A$ then there exists $a_y \in A$ such that $d(a_y, y) = d(y, a_y)$ by the symmetric density of A in X. Thus $(y, a_y) \in Z_d$. Also, we have $d(x, a_y) = d(a_y, x)$ since (A, d_A) is metric subspace. So $(x, a_y) \in Z_d$. By the fact that the relation Z_d is transitive, $(x, y) \in Z_d$. It means that d(x, y) = d(y, x).

38th Summer Conference on Topology and Its Applications Ai

Case 3. If $x \notin A$, $y \notin A$ then there exists $a_x \in A$ and $a_y \in A$ such that $d(a_x, x) = d(x, a_x)$ and $d(a_y, y) = d(y, a_y)$ by the symmetric density of A in X. That is, $(a_x, x), (a_y, y) \in Z_d$ On the other hand, we have $(a_x, a_y) \in Z_d$ by the fact that (A, d_A) is metric subspace. Thus d(x, y) = d(y, x) as the relation Z_d is transitive.

Case 4. If $y \in A$, $x \notin A$ then the proof is similar to Case 2. \Box

38th Summer Conference on Topology and Its Applications Ar Relations Between Symmetric Density and Local Symmetric Connectedness

Let (X, d) be a T_0 -quasi-metric space and $A \subseteq X$. A is symmetrically-dense in X if and only if $Z_d(x) \cap A \neq \emptyset$ for each $x \in X$.

38th Summer Conference on Topology and Its Applications Ar

Let (X, d) be a T_0 -quasi-metric space and $A \subseteq X$. A is symmetrically-dense in X if and only if $Z_d(x) \cap A \neq \emptyset$ for each $x \in X$.

Proof. Take $x \in X$. There are two possibilities:

(1) If $x \in X \setminus A$, there exists $a \in A$ such that d(x, a) = d(a, x)since A is symmetrically-dense in X. Thus, $a \in Z_d(x)$ and $A \cap Z_d(x) \neq \emptyset$

(2) If $x \in A$ clearly $A \cap Z_d(x) \neq \emptyset$ because of $x \in Z_d(x)$.

For the converse, take $x \in X \setminus A$. By the hypothesis, there exists $a \in X$ such that $a \in A$ and $a \in Z_d(x)$. Thus, d(x, a) = d(a, x).

38th Summer Conference on Topology and Its Applications Ar

Let (X, d) be a T_0 -quasi-metric space and $A \subseteq X$. If $C(x) \cap A \neq \emptyset$ for each $x \in X$ and Z_d is transitive then A is symmetrically-dense in X.

38th Summer Conference on Topology and Its Applications A

Proof.

Take $x \in X \setminus A$. By the hypothesis, we have $y \in C(x) \cap A$. Thus, there is a symmetric path $P(x, x_1, ..., x_{n-1}, y)$ from x to y. Now, by the definition of symmetric path we have: $d(x, x_1) = d(x_1, x) \to (x, x_1) \in Z_d$

$$d(x_1, x_2) = d(x_2, x_1) \to (x_1, x_2) \in Z_d$$

$$d(x_{n-1}, y) = d(y, x_{n-1}) \rightarrow (x_{n-1}, y) \in Z_d.$$

So, by using the fact that Z_d is transitive, clearly $(x, y) \in Z_d$ and $d(x, y) = d(y, x).$

38th Summer Conference on Topology and Its Applications Ai

Theorem

(X,d) be a T_0 -quasi-metric space and $A \subseteq X$ symmetrically-dense in X. If the subspace (A, d_A) is symmetrically connected then (X,d) is symmetrically connected.

38th Summer Conference on Topology and Its Applications Ar

Let us take $x, y \in X$ and show that there is a symmetric path from x to y.

Case 1. If $x, y \in A$ there is a symmetric path from x to y in A since (A, d_A) is symmetrically connected. It can be easily seen that there is a symmetric path from x to y in X, since $A \subseteq X$.

Case 2. If $x, y \in X \setminus A$, there are $x', y' \in A$ such that d(x, x') = d(x', x) and d(y, y') = d(y', y) since A is symmetrically-dense in X. On the other hand, there is a symmetric path $P(x', x_1, ..., x_{n-1}, y')$ in A since (A, d_A) is symmetrically connected. Now, clearly $P(x, x', x_1, ..., x_{n-1}, y', y)$ is a symmetric path from x to y in A.

38th Summer Conference on Topology and Its Applications Ar

Case 3. If $x \in X \setminus A$ and $y \in A$, there is $x' \in A$ such that d(x, x') = d(x', x) since A is symmetrically-dense in X. Also, we have a symmetric path $P(x', x_1, ..., x_{n-1}, y)$ in A from x' to y since (A, d_A) is symmetrically connected. Thus the path $P(x, x', x_1, ..., x_{n-1}, y)$ is also a symmetric path in X, from x to y.

Case 4. The case $y \in X \setminus A$ and $x \in A$ can be proved similar to Case 3.

38th Summer Conference on Topology and Its Applications Ar

Each nonempty subset of a T_0 -quasi-metric space (X, d) is symmetrically-dense in X if and only if d is metric.

38th Summer Conference on Topology and Its Applications A

Each nonempty subset of a T_0 -quasi-metric space (X, d) is symmetrically-dense in X if and only if d is metric.

Proof. Let (X, d) be a T_0 -quasi-metric space and assume that each non-empty subset of (X, d) is symmetrically-dense in X. Now take $x, y \in X$, $x \neq y$. In this case the set $A = \{x\}$ is symmetrically-dense by the hypothesis, so for $y \in X \setminus A$ there exists $a \in A$ such that d(a, y) = d(y, a). Note that a = x, thus d(x, y) = d(y, x) that is d is metric.

38th Summer Conference on Topology and Its Applications Ar Relations Between Symmetric Density and Local Symmetric Connectedness

Conversely, suppose that d is metric and $\emptyset \neq A \subseteq X$. Then there is at least one element $a \in A$. Moreover, since (X, d) is metric space the equality d(x, a) = d(a, x) will be obtained for each $x \in X \setminus A$. Finally A is symmetrically-dense in X. \Box

38th Summer Conference on Topology and Its Applications Ar

There is no relation between au_{d^s} -density and symmetric density.

38th Summer Conference on Topology and Its Applications A

Example

Let $Y = \{0\} \cup \{\frac{1}{2^n} : n \in \mathbb{N}\}$ and define $e' : Y \to [0, \infty)$ as follows: $e'(x, y) = \begin{cases} |x - y| & ; x \leq y \text{ and } (x, y) \neq (\frac{1}{2^{n+1}}, \frac{1}{2^n}) \\ 2|x - y| & ; \text{otherwise} \end{cases}$ for $x, y \in Y$.

 $e^{'}$ is a T_{0} -quasi-metric on Y. Also, because of the inequality $e^{'}(a,0)\neq e^{'}(0,a)$ for each $a\in Y\setminus\{0\}$ the point "0" is antisymmetric point.

38th Summer Conference on Topology and Its Applications

The symmetrization metric of e^{\prime} is

$$(e^{'})^{s}(x,y) = \begin{cases} 0 & ; x = y \\ 2|x-y| & ; x \neq y \end{cases} \text{ for } x, y \in Y.$$

Here $(e^{'})^{s}(x,y) = 2|x-y| = 2m(x,y)$ for all $(x,y) \in Y \times Y$ and so $\tau_{m} = \tau_{2m} = \tau_{(e^{'})^{s}}$ on Y, where m denotes the usual metric on \mathbb{R} . Also, note that $m \leq e^{'} \leq (e^{'})^{s}$. Thus, $\tau_{m} = \tau_{(e^{'})}$. Since τ_{m} is the usual topology on \mathbb{R} ,

 $\tau_{(e^{'})^{s}}=\tau_{2m}$ is the discrete topology on Y except the point " 0 " .

38th Summer Conference on Topology and Its Applications A Relations Between Symmetric Density and Local Symmetric Connectedness

Note that
$$B_{(e')^s}(0,\epsilon) = \{0, ..., \frac{1}{2^n}\}$$
 for $0 \in Y$ and $\epsilon > 0$. Then $Y \setminus B_{(e')^s}(0,\epsilon) = \{\frac{1}{2^{n-1}}, \frac{1}{2^{n-2}}, ..., \frac{1}{2}\}.$

The topology $\tau_{(e^{\prime})^{s}}$ at point " 0 " is co-finite topology.

38th Summer Conference on Topology and Its Applications Ar

Now let us show that $V = Y \setminus \{0\}$ is $\tau_{(e')^s}$ -dense. Conversely, If V is not $\tau_{(e')^s}$ -dense then there is $G \in \tau_{(e')^s}$ such that $V \cap G = \emptyset$ so $G \subseteq \{0\}$ which is contradiction. Then $V = Y \setminus \{0\}$ is $\tau_{(e')^s}$ -dense.

On the other side, since "0" is antisymmetric point, then $V = Y \setminus \{0\}$ is not symmetrically-dense.

38th Summer Conference on Topology and Its Applications Ar

4. Relations Between Symmetric Density and Local Symmetric Connectedness

38th Summer Conference on Topology and Its Applications Ar

4. Relations Between Symmetric Density and Local Symmetric Connectedness

Proposition

Let (X, d) be a locally symmetrically connected T_0 -quasi-metric space, $A \subseteq X$ and Z_d transitive. If A is τ_{d^s} -dense then A is symmetrically-dense in X.

38th Summer Conference on Topology and Its Applications Ar

4. Relations Between Symmetric Density and Local Symmetric Connectedness

Proposition

Let (X, d) be a locally symmetrically connected T_0 -quasi-metric space, $A \subseteq X$ and Z_d transitive. If A is τ_{d^s} -dense then A is symmetrically-dense in X.

Proof. Choose $x \in X \setminus A$. Since (X, d) is locally symmetrically connected then $C(x) \in \tau_{d^s}$. Now $C(x) \cap A \neq \emptyset$ by the τ_{d^s} -density of A. Then there is $a \in X$ such that $a \in C(x) \cap A$. Therefore $a \in A$ and there is a symmetric path $P(a = x_0, x_1, ..., x_n = x)$ from a to x. By transitivity of Z_d , d(x, a) = d(a, x). Thus A is symmetrically-dense. \Box

38th Summer Conference on Topology and Its Applications Ar

Example

Take the Sorgenfrey T_0 -quasi-metric

$$d(x,y) = \left\{ \begin{array}{ll} x-y & ; x \geq y \\ 1 & ; y > x \end{array} \right.$$

on $X = \{2,3\}$. As it seen before the topology τ_{d^s} is discrete then (X,d) is locally symmetrically connected. And clearly Z_d is transitive on X. Take $A = \{2\} \subseteq X$. Since d(2,3) = d(3,2), then A is symmetrically-dense but since $A \cap \{3\} = \emptyset$, then A is not $\tau_{d^s|_X}$ -dense.

38th Summer Conference on Topology and Its Applications A Relations Between Symmetric Density and Local Symmetric Connectedness

Let (X, d) be a T_0 -quasi-metric space. If each nonempty subset of (X, d) is symmetrically-dense in X then (X, d) is locally symmetrically connected.

38th Summer Conference on Topology and Its Applications Ar

Let (X, d) be a T_0 -quasi-metric space. If each nonempty subset of (X, d) is symmetrically-dense in X then (X, d) is locally symmetrically connected.

Proof. Consider (X, d) is not locally symmetrically connected then it is not symmetrically connected. By the definition of symmetrically connected space there is $x \in X$ such that $C(x) \neq X$. Now let $A = X \setminus C(x)$. By the hypothesis A is symmetrically-dense. Then for $y \in X \setminus A = C(x)$ there is $a \in A$ such that d(a, y) = d(y, a) then C(y) = C(a). Now since C(y) = C(x) (because $y \in C(x)$) then C(a) = C(x) = C(y) and $a \in C(x) = X \setminus A$ which is contradiction. Then (X, d) is locally symmetrically connected. \Box

38th Summer Conference on Topology and Its Applications Ar

Example

Consider Star space, that is on $X = [0, \infty)$ the function

$$d: X \times X \longrightarrow [0, \infty)$$
$$d(x, y) = \begin{cases} x - y & ; y \le x \\ x + y & ; y > x \end{cases}$$

As previously mentioned Star space is locally symmetrically

connected but since $d(3,5) \neq d(5,3)$ the subset $A = \{3\}$ is not symmetrically-dense.

38th Summer Conference on Topology and Its Applications A Relations Between Symmetric Density and Local Symmetric Connectedness

Theorem

Let (X, d) be a locally symmetrically connected T_0 -quasi-metric space and Z_d transitive. If each nonempty subset of (X, d) is τ_{d^s} connected then d is metric.

38th Summer Conference on Topology and Its Applications Ar

Theorem

Let (X, d) be a locally symmetrically connected T_0 -quasi-metric space and Z_d transitive. If each nonempty subset of (X, d) is τ_{d^s} connected then d is metric.

Proof. Let $x, y \in X$ and $x \neq y$. Since (X, d) is locally symmetrically connected then $C(x), C(y) \in \tau_{d^s}$. Take $A = C(x) \cup C(y) \subseteq X$. By the hypothesis A is connected then it cannot be represented as the union of two disjoint non-empty open subsets, then $C(x) \cap C(y) \neq \emptyset$. Therefore there is $z \in C(x) \cap C(y)$ and there are symmetric paths $P_{xz}(x,...,z)$ and $P_{zy}(z,...,y)$ then $P_{xy}(x,...,z,...,y)$ is a symmetric path from x to y. That is $x \in C(y)$. Now by the transitivity of Z_d , d(x,y) = d(y,x) thus d is metric \Box

38th Summer Conference on Topology and Its Applications Ar

Example

Let us define the metric d on the set $X = \{1, 2, 3\}$ via the matrix

$$P = \begin{bmatrix} 0 & 5 & 6 \\ 5 & 0 & 2 \\ 6 & 2 & 0 \end{bmatrix}$$

The topology $\tau_{d^s} = \tau_d$ is discrete topology on X, since the unique topology which is T_1 on a finite set is discrete topology. Then (X, d) is locally symmetrically connected and clearly Z_d is transitive. Take the subset $A = \{1, 2\}$. Now, Since $A = \{1\} \cup \{2\}$ and $\{1\} \cap \{2\} = \emptyset$ then A is not τ_{d^s} -dense.

38th Summer Conference on Topology and Its Applications Ai

Corollary

Let (X, d) be a locally symmetrically connected T_0 -quasi-metric space and Z_d transitive. If each nonempty subset of (X, d) is τ_{d^s} connected then each nonempty subset of a T_0 -quasi-metric space (X, d) is symmetrically-dense in X.

38th Summer Conference on Topology and Its Applications Ar

References

- 1. Cobzaș Ș., Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, Springer, Basel, **2012**.
- 2. Demetriou N., Künzi H.-P. A., A study of quasi-pseudometrics, Hacettepe Journal of Mathematics and Statistics, 46 (1), 33-52, **2017**.
- 3. Javanshir N., Yıldız F., Locally symmetrically connected T_0 -quasi-metric spaces, Quaestiones Mathematicae, DOI:10.2989/16073606.2021.1882602, **2021**.
- 4. Javanshir N., Yıldız F., Symmetrically connected and antisymmetrically connected T_0 -quasi-metric extensions, Topology and its Applications 276, 107179, **2020**.

38th Summer Conference on Topology and Its Applications A

References

- Javanshir N., Yıldız F., Various Results on Some Asymmetric Types of Density, Commun. Fac. Sci. Univ .Ank.Ser. A1 Math. Stat. Volume 72, Number 4, 1173–1186, 2023.
- Künzi, H.-P.A., Yıldız F., Convexity structures in T₀-quasi-metric spaces, Topology and its Applications 200, 2–18, **2016**.
- Künzi, H.-P.A., Yıldız, F., Javanshir, N., Symmetrically and antisymmetrically-dense subspaces of T₀-quasi-metric spaces, Top. Proc., 61, 215-231, **2023**.
- 8. Willard S., General Topology, Dover Publications, 2004.

38th Summer Conference on Topology and Its Applications Ai

 Yıldız F., Künzi H.-P.A. Symmetric connectedness in T₀-quasi-metric spaces, Bulletin of the Belgian Mathematical Society, Simon Stevin 26, (5), 659-679, **2019**.

38th Summer Conference on Topology and Its Applications Ar

38th Summer Conference on Topology and Its Applications Ai