
The topology of the polar involution of convex sets

Natalia Jonard-Pérez and Luisa F. Higueras-Montaño

Universidad Nacional Autónoma de México

38th Summer conference on topology and its applications, 8-12
July 2024

Natalia Jonard-Pérez and Luisa F. Higueras-Montaño The topology of the polar involution of convex sets



Polar Set

Let Rn, n ≥ 2, be the n-dimensional Euclidean space endowed
with the standard inner product ⟨·, ·⟩.
The polar set of any nonempty subset A ⊂ Rn is defined as

A◦ : = {x ∈ Rn | ⟨x , a⟩ ≤ 1 for every a ∈ A}

=

{
x ∈ Rn : sup

a∈A
⟨a, x⟩ ≤ 1

}
.
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Example
If A = {0}, then A◦ = Rn.
If A = Rn, then A◦ = {0}.
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Example
If A = [0,∞)× {0} ⊂ R2, then A◦ = (−∞, 0]× R
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If A = [0,∞)× {0} ⊂ R2, then A◦ = (−∞, 0]× R
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Example
If A = Bn := {x : ||x || ≤ 1}, then A◦ = A = Bn.

In fact,

A◦ = A ⇐⇒ A = Bn
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Basic Properties of the Polar Set

Theorem:
For every nonempty subset A ⊂ Rn, the polar set A◦ is a closed
convex subset with 0 ∈ A◦

Notation
Kn

0 := {A ⊂ Rn : A is closed, convex and 0 ∈ A}
α : Kn

0 → Kn
0 the map given by

α(A) = A◦

Bipolar Theorem:
For every A ∈ Kn

0 , we always have that

(A◦)◦ = A.
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Basic Properties of the Polar Set

For every A,B ∈ Kn
0 the following hold:

A◦ = A ⇐⇒ A = Bn (Bn is the only fixed point of α).
(A◦)◦ = A (α is an involution on Kn

0).
If A ⊂ B , then B◦ ⊂ A◦ (α is decreasing with respect to the
order given by the inclusion on Kn

0).
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Definition:
α is called the polar involution.
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Let us recall...

For every A,B ∈ Kn
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Theorem (2008-2011):
Let f : Kn

0 → Kn
0 be a map such that for every A,K ∈ Kn

0 ,

(D1) f (f (A)) = A,
(D2) A ⊆ K then f (A) ⊇ f (K ).
Then there exists a symmetric linear isomorphism T : Rn → Rn

such that
f (A) = T (A◦), for all A ∈ Kn

0 .

In 2008 K. Böröczky y R. Schneider proved an earlier version
of this result, but instead of Kn

0 they considered the family of
all convex compact sets containing 0 in their interior.
In 2008, S. Artstein-Avidan and V. Milman, 2008 stated the
theorem (without a formal proof).
In 2011, B. Slomka proved the theorem as a corollary of a
more general result.
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(2007-2009) S. Artstein-Avidan and V. Milman showed several
examples of spaces in which all decreasing involutions are
“essentially the same”.
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What can we say about the polar involution from a topological
point of view?

First, we have to equip Kn
0 with a “good topology”.
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The Hausdorff metric

Let (X , d) be a metric space and let CL(X ) be the family of all
nonempty closed subsets of X .
The Hausdorff metric on CL(X ) is defined by

dH : CL(X )× CL(X ) → [0,∞]

where

dH(A,B) = máx {sup{d(a,B) | a ∈ A}, sup{d(b,A) | b ∈ B}} .

If A or B are unbounded, then the Hausforff distance dH(A,B)
can be infinite.
(Kn

0 , dH) is a very ugly space with an infinite number of
connected components.
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The Attouch-Wets metric
The Attouch-Wets metric on Kn

0 is defined by

dAW (A,K ) := sup
j∈N

{
ḿın

{
1
j
, sup
∥x∥<j

|d(x ,A)− d(x ,K )|

}}

If A,K ∈ Kn
0 , then

dAW (A,K ) := sup
j∈N

{
ḿın

{
1
j
, dH(A ∩ jB,K ∩ jB)

}}

If A,K ∈ Kn
0 , then for every integer j ≥ 1 and every ε ∈

(
1

j+1 ,
1
j

]
,

dAW (A,K ) < ε ⇐⇒ dH
(
A ∩ jB,K ∩ jB

)
< ε.
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Remark:
The topology generated by dAW on Kn

0 coincides with the Fell
topology and the Wijsman topology.
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Fell topology

The Fell topology on Kn
0 is the topology generated by the sets

(Rn \ K )+ := {A : A ∩ K = ∅}

U− := {A : A ∩ U ̸= ∅}

where K ⊂ Rn is compact and U ⊂ Rn is open.
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The Wijsman topology

The Wijsman topology on Kn
0 is the topology generated by the sets

U(x , ε)+ := {A : d(x ,A) < ε},

U(x , ε)− := {A : d(x ,A) > ε}.
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Who is (Kn
0 , dAW )?

Definition:
The Hilbert cube is the topological product

Q :=
∏
n∈N

[−1, 1].
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Topological classification of some families of convex sets

(Kn
b, dH)

∼= Q × [0, 1), where Kn
b denotes the family of all

compact convex subsets of Rn (S. Nadler, J. Quinn y N.
Stavrakas, 1979).

(Kn, dAW ) ∼= Q × Rn, where Kn denotes the family of all
closed convex subsets of Rn (K. Sakai y Z. Yang, 2007).

(Kn
(b), dH)

∼= Q × R
n(n+3)

2 , where Kn
(b) denotes the family of all

compact convex subsets of Rn with non empty interior (S.
Antonyan y N. J-P, 2013).

The Hausdorff metric and the Attouch-Wets metric are equivalent
in Kn

b.
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Who is (Kn
0 , dAW )?

Theorem (L. F. Higueras-Montaño and N. J.-P.)
(Kn

0 , dAW ) is homeomorphic with the Hilbert cube.
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Theorem (R. A. Wijsman, 1963 + some recent remarks)
α : (Kn

0 , dAW ) → (Kn
0 , dAW ) is continuous.
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Let us recall that...

For every A,B ∈ Kn
0 the following hold:

A◦ = A ⇐⇒ A = Bn (Bn is the only fixed point of α).
(A◦)◦ = A (α is an involution on Kn

0).
If A ⊂ B , then B◦ ⊂ A◦ (α is decreasing with respect to the
order given by the inclusion on Kn

0).
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Remark:
The polar map is a continuous involution on Kn

0 (which is
homeomorphic to the Hilbert cube) with a unique fixed point.
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Standard Involution on Q

Let Q be the Hilbert cube and σ : Q → Q be defined by

σ(x) = −x .

The map σ is a continuous involution with a unique fixed
point.
The involution σ is called the standard involution on Q.
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Anderson’s Problem (1960’s)

Open Problem
If β : Q → Q is a continuous involution with a unique fixed point,
does there exist a homeomorphism Ψ : Q → Q such that
β = Ψ−1σΨ?

Q
β //

Ψ
��

Q

Q
σ // Q

Ψ−1

OO

In other words: is σ topologically conjugate to β?
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Despite the many efforts that have been done to answer this
question, Anderson’s problem remains open.

It is known that compactness of Q is essential.

Theorem (J. van Mill and J. West, 2020)
Let σR∞ : R∞ → R∞ and σℓ2 : ℓ2 → ℓ2 be defined as

σR∞(x) = −x σℓ2(x) = −x .

Even if R∞ and ℓ2 are homeomorphic, the involutions σR∞ and σℓ2
are not topologically conjugate to each other.
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Theorem 1 (L. F. Higueras-Montaño y N. J-P., 2022):
The polar involution α : Kn

0 → Kn
0 is topologically conjugate to the

standard involution σ : Q → Q.
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let us recall that...

Theorem (2008-2011):
Let f : Kn

0 → Kn
0 be a map such that for every A,K ∈ Kn

0 ,

(D1) f (f (A)) = A,
(D2) A ⊆ K then f (A) ⊇ f (K ).
Then there exists a symmetric linear isomorphism T : Rn → Rn

such that
f (A) = T (A◦), for all A ∈ Kn

0 .

From an algebraic point of view all decreasing involutions on
Kn

0 are equivalent.
From a dynamical point of view this is not true!
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Theorem 2 (L. F. Higueras-Montaño and N. J-P., 2022):
Let T : Rn → Rn be a symmetric linear isomorphism and let
f : Kn

0 → Kn
0 be defined as f (A) = T (A◦). Then, the following

statements hold.
1 If T is positive-definite, then f is conjugate with the polar

mapping. In particular, f has a unique fixed point.
2 If T is not positive-definite, then f has infinitely many fixed

points.
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Example
Let T : R2 → R2 be the linear isomorphism given by
T (x , y) = (−x , y) and f : K2

0 → K2
0 be defined by

f (A) = T (A◦)

Then the following elements of K2
0 are fixed points of f :

{(x , y) : x2 + y2 ≤ 1} {(x , y) : x ≥ |y |}
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Corollary
Every decreasing involution f : Kn

0 → Kn
0 with a unique fixed point

is conjugate with the standard involution on Q. Moreover, f is of
the form f (A) = T (A◦) for some positive-definite linear
isomorphism T : Rn → Rn.

Namely:

Every decreasing involution f : Kn
0 → Kn

0 with a unique fixed point
is the polar map with respect to some inner product on Rn.
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Again, these properties!!!

For every A,B ∈ Kn
0 the following hold:

A◦ = A ⇐⇒ A = Bn (Bn is the only fixed point of α).
(A◦)◦ = A (α is an involution on Kn

0).
If A ⊂ B , then B◦ ⊂ A◦ (α is decreasing with respect to the
order given by the inclusion on Kn

0).

These three properties characterize the polar involution(s) on Kn
0
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Final remarks and questions

Remark:
The order given by the inclusion ⊂ on Kn

0 defines a lattice
structure, where the operations ∧ and ∨ are given by

K ∧ L := K ∩ L, K ∨ L := conv(K ∪ L).
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Final remarks and questions

The Hilbert cube Q =
∏

n∈N[−1, 1] has a lattice structure
where the order ⪯ is defined by

x ⪯ y ⇐⇒ xn ≤ yn for every n ∈ N,

and the operations ∨ and ∧ are defined by

x ∨ y := (máx{xi , yi})i x ∧ y := (ḿın{xi , yi})i .

The standard involution is decreasing with respect to ⪯.
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Final remarks and questions

After Slomka’s result (c.f. S. Arstein-Avidan and V. Milman), it is
natural to ask the following weak version of Anderson’s problem:

Question (Anderson’s problem):
Let β : Q → Q be a continuous involution with a unique fixed
point, Is β conjugate with the standard involution?
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Final remarks and questions

After Slomka’s result (c.f. S. Arstein-Avidan and V. Milman), it is
natural to ask the following weak version of Anderson’s problem:

Question (Weak version of Anderson’s problem):
Let β : Q → Q be a continuous involution with a unique fixed
point. Assume that there exists a lattice structure (⪯,∧,∨) such
that β is decreasing with respect to ⪯.
Is β conjugate with the standard involution?
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Final remarks and questions

(A. López Poo) If the lattice is modular (namely, if a ⪯ b
implies that a ∧ (x ∨ b) = (a ∧ x) ∨ b) and the operations ∨
and ∧ are continuous (such as it happens with the natural
lattice structure on Q), then the answer is yes.

Notice that the operations ∨ and ∧ are not continuous on Kn
0

and the lattice structure is not modular.
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Thank you!
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