The topology of the polar involution of convex sets

Natalia Jonard-Pérez and Luisa F. Higueras-Montaño

Universidad Nacional Autónoma de México

38th Summer conference on topology and its applications, 8-12 July 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Polar Set

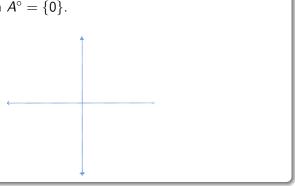
- Let ℝⁿ, n ≥ 2, be the n-dimensional Euclidean space endowed with the standard inner product ⟨·, ·⟩.
- The polar set of any nonempty subset $A \subset \mathbb{R}^n$ is defined as

$$egin{aligned} \mathcal{A}^\circ &:= \left\{ x \in \mathbb{R}^n \mid \langle x, a
angle \leq 1 ext{ for every } a \in \mathcal{A}
ight\} \ &= \left\{ x \in \mathbb{R}^n : \sup_{a \in \mathcal{A}} \langle a, x
angle \leq 1
ight\}. \end{aligned}$$

(日) (四) (三) (三) (三) (三)

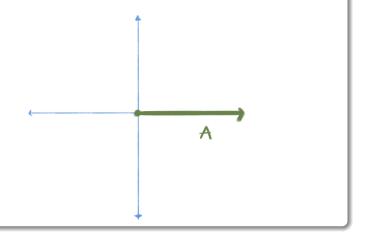
Example

- If $A = \{0\}$, then $A^{\circ} = \mathbb{R}^n$.
- If $A = \mathbb{R}^n$, then $A^\circ = \{0\}$.



イロト イロト イヨト イヨト 三日

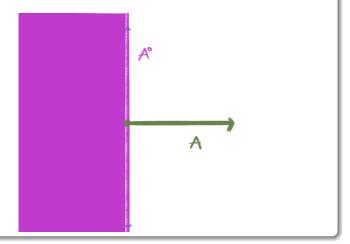
Example If $A = [0,\infty) \times \{0\} \subset \mathbb{R}^2$, then $A^\circ = (-\infty,0] \times \mathbb{R}$



Natalia Jonard-Pérez and Luisa F. Higueras-Montaño

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

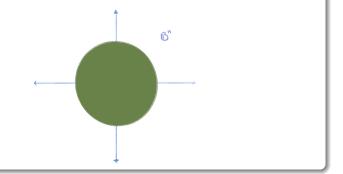
Example If $A = [0,\infty) \times \{0\} \subset \mathbb{R}^2$, then $A^\circ = (-\infty,0] \times \mathbb{R}$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Example

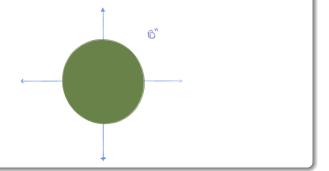
If $A = \mathbb{B}^n := \{x : ||x|| \le 1\}$, then $A^\circ = A = \mathbb{B}^n$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Example

If $A = \mathbb{B}^n := \{x : ||x|| \le 1\}$, then $A^\circ = A = \mathbb{B}^n$.



< □ > < @ > < 注 > < 注 > ... 注

In fact,

$$A^{\circ} = A \iff A = \mathbb{B}^n$$

Theorem:

For every nonempty subset $A \subset \mathbb{R}^n$, the polar set A° is a closed convex subset with $0 \in A^\circ$

(日) (四) (三) (三) (三) (三)

Theorem:

For every nonempty subset $A \subset \mathbb{R}^n$, the polar set A° is a closed convex subset with $0 \in A^\circ$

Notation

•
$$\mathcal{K}_0^n := \{A \subset \mathbb{R}^n : A \text{ is closed, convex and } 0 \in A\}$$

•
$$\alpha : \mathcal{K}_0^n \to \mathcal{K}_0^n$$
 the map given by

$$\alpha(A)=A^\circ$$

(日) (四) (三) (三) (三) (三)

Theorem:

For every nonempty subset $A \subset \mathbb{R}^n$, the polar set A° is a closed convex subset with $0 \in A^\circ$

Notation

•
$$\mathcal{K}_0^n := \{A \subset \mathbb{R}^n : A \text{ is closed, convex and } 0 \in A\}$$

•
$$\alpha : \mathcal{K}_0^n \to \mathcal{K}_0^n$$
 the map given by

$$\alpha(A) = A^{\circ}$$

Bipolar Theorem:

For every $A \in \mathcal{K}_0^n$, we always have that

$$(A^{\circ})^{\circ} = A.$$

For every $A, B \in \mathcal{K}_0^n$ the following hold:

For every $A, B \in \mathcal{K}_0^n$ the following hold:

• $A^\circ = A \iff A = \mathbb{B}^n$

For every $A, B \in \mathcal{K}_0^n$ the following hold:

• $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).

(日) (四) (三) (三) (三) (三)

For every $A, B \in \mathcal{K}_0^n$ the following hold:

• $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).

(日) (四) (三) (三) (三) (三)

•
$$(A^\circ)^\circ = A$$

For every $A, B \in \mathcal{K}_0^n$ the following hold:

• $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).

• $(A^{\circ})^{\circ} = A (\alpha \text{ is an involution on } \mathcal{K}_0^n).$

For every $A, B \in \mathcal{K}_0^n$ the following hold:

• $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).

イロト イロト イヨト イヨト 三日

- $(A^{\circ})^{\circ} = A (\alpha \text{ is an involution on } \mathcal{K}_0^n).$
- If $A \subset B$, then $B^{\circ} \subset A^{\circ}$

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A (\alpha \text{ is an involution on } \mathcal{K}_0^n).$
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on Kⁿ₀).

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A$ (α is an involution on \mathcal{K}_{0}^{n}).
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on Kⁿ₀).

Definition:

 α is called the polar involution.

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A$ (α is an involution on \mathcal{K}_{0}^{n}).
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on Kⁿ₀).

Let us recall...

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A$ (α is an involution on \mathcal{K}_{0}^{n}).
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on Kⁿ₀).

Let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be a map such that for every $A, K \in \mathcal{K}_0^n$, (D1) f(f(A)) = A, (D2) $A \subseteq K$ then $f(A) \supseteq f(K)$.

Then there exists a symmetric linear isomorphism $\mathcal{T}:\mathbb{R}^n\to\mathbb{R}^n$ such that

 $f(A) = T(A^{\circ}), \quad \text{ for all } A \in \mathcal{K}_0^n.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つくで

Let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be a map such that for every $A, K \in \mathcal{K}_0^n$, (D1) f(f(A)) = A, (D2) $A \subseteq K$ then $f(A) \supseteq f(K)$.

Then there exists a symmetric linear isomorphism $T: \mathbb{R}^n \to \mathbb{R}^n$ such that

 $f(A) = T(A^{\circ}), \quad \text{ for all } A \in \mathcal{K}_0^n.$

 In 2008 K. Böröczky y R. Schneider proved an earlier version of this result, but instead of Kⁿ₀ they considered the family of all convex compact sets containing 0 in their interior.

Let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be a map such that for every $A, K \in \mathcal{K}_0^n$, (D1) f(f(A)) = A, (D2) $A \subseteq K$ then $f(A) \supseteq f(K)$.

Then there exists a symmetric linear isomorphism $T:\mathbb{R}^n\to\mathbb{R}^n$ such that

 $f(A) = T(A^{\circ}), \quad \text{ for all } A \in \mathcal{K}_0^n.$

- In 2008 K. Böröczky y R. Schneider proved an earlier version of this result, but instead of Kⁿ₀ they considered the family of all convex compact sets containing 0 in their interior.
- In 2008, S. Artstein-Avidan and V. Milman, 2008 stated the theorem (without a formal proof).

Let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be a map such that for every $A, K \in \mathcal{K}_0^n$, (D1) f(f(A)) = A, (D2) $A \subseteq K$ then $f(A) \supseteq f(K)$.

Then there exists a symmetric linear isomorphism $T:\mathbb{R}^n\to\mathbb{R}^n$ such that

 $f(A) = T(A^{\circ}), \quad \text{ for all } A \in \mathcal{K}_0^n.$

- In 2008 K. Böröczky y R. Schneider proved an earlier version of this result, but instead of Kⁿ₀ they considered the family of all convex compact sets containing 0 in their interior.
- In 2008, S. Artstein-Avidan and V. Milman, 2008 stated the theorem (without a formal proof).
- In 2011, B. Slomka proved the theorem as a corollary of a more general result.

• (2007-2009) S. Artstein-Avidan and V. Milman showed several examples of spaces in which all decreasing involutions are "essentially the same".

イロン イヨン イヨン イヨン

3

• What can we say about the polar involution from a topological point of view?

• What can we say about the polar involution from a topological point of view?

• First, we have to equip \mathcal{K}_0^n with a "good topology".

The Hausdorff metric

Let (X, d) be a metric space and let CL(X) be the family of all nonempty closed subsets of X. The Hausdorff metric on CL(X) is defined by

$$d_H: CL(X) \times CL(X) \rightarrow [0,\infty]$$

where

$$d_H(A,B)= ext{max}\left\{ ext{sup}\left\{d(a,B)\mid a\in A
ight\}, \ ext{sup}\left\{d(b,A)\mid b\in B
ight\}
ight\}.$$

(日) (四) (三) (三) (三) (三)

The Hausdorff metric

Let (X, d) be a metric space and let CL(X) be the family of all nonempty closed subsets of X. The Hausdorff metric on CL(X) is defined by

$$d_H: CL(X) \times CL(X) \rightarrow [0,\infty]$$

where

$$d_H(A,B) = \mathsf{m}\mathsf{a}\mathsf{x}\left\{\mathsf{sup}\{d(a,B) \mid a \in A\}, \ \mathsf{sup}\{d(b,A) \mid b \in B\}\right\}.$$

• If A or B are unbounded, then the Hausforff distance $d_H(A, B)$ can be infinite.

э

The Hausdorff metric

Let (X, d) be a metric space and let CL(X) be the family of all nonempty closed subsets of X. The Hausdorff metric on CL(X) is defined by

$$d_H: CL(X) \times CL(X) \rightarrow [0,\infty]$$

where

$$d_H(A,B) = \mathsf{m}\mathsf{a}\mathsf{x}\left\{\mathsf{sup}\{d(a,B) \mid a \in A\}, \ \mathsf{sup}\{d(b,A) \mid b \in B\}\right\}.$$

- If A or B are unbounded, then the Hausforff distance $d_H(A, B)$ can be infinite.
- (Kⁿ₀, d_H) is a very ugly space with an infinite number of connected components.

The Attouch-Wets metric

The Attouch-Wets metric on \mathcal{K}_0^n is defined by

$$d_{AW}(A,K) := \sup_{j \in \mathbb{N}} \left\{ \min \left\{ \frac{1}{j}, \sup_{\|x\| < j} |d(x,A) - d(x,K)| \right\} \right\}$$

イロト イロト イヨト イヨト 三日

The Attouch-Wets metric

The Attouch-Wets metric on \mathcal{K}_0^n is defined by

$$d_{AW}(A,K) := \sup_{j \in \mathbb{N}} \left\{ \min \left\{ \frac{1}{j}, \sup_{\|x\| < j} |d(x,A) - d(x,K)| \right\} \right\}$$

If $A, K \in K_0^n$, then

$$d_{AW}(A,K) := \sup_{j \in \mathbb{N}} \left\{ \min \left\{ \frac{1}{j}, d_H(A \cap j\mathbb{B}, K \cap j\mathbb{B}) \right\} \right\}$$

The Attouch-Wets metric

The Attouch-Wets metric on \mathcal{K}_0^n is defined by

$$d_{AW}(A,K) := \sup_{j \in \mathbb{N}} \left\{ \min \left\{ \frac{1}{j}, \sup_{\|x\| < j} |d(x,A) - d(x,K)| \right\} \right\}$$

If $A, K \in K_0^n$, then

$$d_{AW}(A, K) := \sup_{j \in \mathbb{N}} \left\{ \min \left\{ \frac{1}{j}, d_H(A \cap j\mathbb{B}, K \cap j\mathbb{B}) \right\} \right\}$$

If $A, K \in K_0^n$, then for every integer $j \ge 1$ and every $\varepsilon \in \left(\frac{1}{j+1}, \frac{1}{j}\right]$, $d_{AW}(A, K) < \varepsilon \iff d_H \left(A \cap j \mathbb{B}, K \cap j \mathbb{B}\right) < \varepsilon.$

Remark:

The topology generated by d_{AW} on \mathcal{K}_0^n coincides with the Fell topology and the Wijsman topology.

(日) (四) (三) (三) (三) (三)

Fell topology

The Fell topology on \mathcal{K}_0^n is the topology generated by the sets

$$(\mathbb{R}^n \setminus K)^+ := \{A : A \cap K = \emptyset\}$$

$$U^- := \{A : A \cap U \neq \emptyset\}$$

where $K \subset \mathbb{R}^n$ is compact and $U \subset \mathbb{R}^n$ is open.

The Wijsman topology

The Wijsman topology on \mathcal{K}_0^n is the topology generated by the sets

$$U(x,\varepsilon)^+ := \{A : d(x,A) < \varepsilon\},\$$
$$U(x,\varepsilon)^- := \{A : d(x,A) > \varepsilon\}.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Who is $(\mathcal{K}_0^n, d_{AW})$?

Who is $(\mathcal{K}_0^n, d_{AW})$?

Definition:

The Hilbert cube is the topological product

$$Q:=\prod_{n\in\mathbb{N}}[-1,1].$$

◆□ > ◆□ > ◆豆 > ◆豆 > ●

Э

(Kⁿ_b, d_H) ≅ Q × [0, 1), where Kⁿ_b denotes the family of all compact convex subsets of ℝⁿ (S. Nadler, J. Quinn y N. Stavrakas, 1979).

イロト イボト イヨト イヨト 二日

- (Kⁿ_b, d_H) ≅ Q × [0, 1), where Kⁿ_b denotes the family of all compact convex subsets of ℝⁿ (S. Nadler, J. Quinn y N. Stavrakas, 1979).
- $(\mathcal{K}^n, d_{AW}) \cong Q \times \mathbb{R}^n$, where \mathcal{K}^n denotes the family of all closed convex subsets of \mathbb{R}^n (K. Sakai y Z. Yang, 2007).

(日)(四)((日))(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)

- (Kⁿ_b, d_H) ≅ Q × [0, 1), where Kⁿ_b denotes the family of all compact convex subsets of ℝⁿ (S. Nadler, J. Quinn y N. Stavrakas, 1979).
- (Kⁿ, d_{AW}) ≅ Q × ℝⁿ, where Kⁿ denotes the family of all closed convex subsets of ℝⁿ (K. Sakai y Z. Yang, 2007).
- $(\mathcal{K}_{(b)}^n, d_H) \cong Q \times \mathbb{R}^{\frac{n(n+3)}{2}}$, where $\mathcal{K}_{(b)}^n$ denotes the family of all compact convex subsets of \mathbb{R}^n with non empty interior (S. Antonyan y N. J-P, 2013).

- (Kⁿ_b, d_H) ≅ Q × [0, 1), where Kⁿ_b denotes the family of all compact convex subsets of ℝⁿ (S. Nadler, J. Quinn y N. Stavrakas, 1979).
- $(\mathcal{K}^n, d_{AW}) \cong Q \times \mathbb{R}^n$, where \mathcal{K}^n denotes the family of all closed convex subsets of \mathbb{R}^n (K. Sakai y Z. Yang, 2007).
- $(\mathcal{K}_{(b)}^n, d_H) \cong Q \times \mathbb{R}^{\frac{n(n+3)}{2}}$, where $\mathcal{K}_{(b)}^n$ denotes the family of all compact convex subsets of \mathbb{R}^n with non empty interior (S. Antonyan y N. J-P, 2013).

The Hausdorff metric and the Attouch-Wets metric are equivalent in \mathcal{K}_{b}^{n} .

Who is $(\mathcal{K}_0^n, d_{AW})$?

Natalia Jonard-Pérez and Luisa F. Higueras-Montaño

(日) (종) (종) (종) (종) (종)

Who is $(\mathcal{K}_0^n, d_{AW})$?

Theorem (L. F. Higueras-Montaño and N. J.-P.) $(\mathcal{K}_0^n, d_{AW})$ is homeomorphic with the Hilbert cube.

Theorem (R. A. Wijsman, 1963 + some recent remarks) $\alpha : (\mathcal{K}_0^n, d_{AW}) \rightarrow (\mathcal{K}_0^n, d_{AW})$ is continuous.

(日)(四)((日))(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)

Let us recall that...

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A$ (α is an involution on \mathcal{K}_{0}^{n}).
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on Kⁿ₀).

Let us recall that...

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A$ (α is an involution on \mathcal{K}_{0}^{n}).
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on Kⁿ₀).

Remark:

The polar map is a continuous involution on \mathcal{K}_0^n (which is homeomorphic to the Hilbert cube) with a unique fixed point.

Standard Involution on Q

Let Q be the Hilbert cube and $\sigma: Q
ightarrow Q$ be defined by

$$\sigma(\mathbf{x}) = -\mathbf{x}.$$

- The map σ is a continuous involution with a unique fixed point.
- The involution σ is called the standard involution on Q.

(日)(四)((日))(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)

Anderson's Problem (1960's)

Open Problem

If $\beta: Q \to Q$ is a continuous involution with a unique fixed point, does there exist a homeomorphism $\Psi: Q \to Q$ such that $\beta = \Psi^{-1}\sigma\Psi$?

In other words: is σ topologically conjugate to β ?

• Despite the many efforts that have been done to answer this question, Anderson's problem remains open.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Despite the many efforts that have been done to answer this question, Anderson's problem remains open.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• It is known that compactness of Q is essential.

- Despite the many efforts that have been done to answer this question, Anderson's problem remains open.
- It is known that compactness of Q is essential.

Theorem (J. van Mill and J. West, 2020) Let $\sigma_{\mathbb{R}^{\infty}} : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ and $\sigma_{\ell_2} : \ell_2 \to \ell_2$ be defined as

$$\sigma_{\mathbb{R}^{\infty}}(x) = -x \qquad \sigma_{\ell_2}(x) = -x.$$

Even if \mathbb{R}^{∞} and ℓ_2 are homeomorphic, the involutions $\sigma_{\mathbb{R}^{\infty}}$ and σ_{ℓ_2} are not topologically conjugate to each other.

Theorem 1 (L. F. Higueras-Montaño y N. J-P., 2022): The polar involution $\alpha : \mathcal{K}_0^n \to \mathcal{K}_0^n$ is topologically conjugate to the standard involution $\sigma : Q \to Q$.

イロト イロト イヨト イヨト 三日

let us recall that ...

Theorem (2008-2011):

Let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be a map such that for every $A, K \in \mathcal{K}_0^n$, (D1) f(f(A)) = A, (D2) $A \subseteq K$ then $f(A) \supseteq f(K)$.

Then there exists a symmetric linear isomorphism $T: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$f(A) = T(A^{\circ}), \quad \text{ for all } A \in \mathcal{K}_0^n.$$

let us recall that ...

Theorem (2008-2011):

Let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be a map such that for every $A, K \in \mathcal{K}_0^n$, (D1) f(f(A)) = A, (D2) $A \subseteq K$ then $f(A) \supseteq f(K)$.

Then there exists a symmetric linear isomorphism $\mathcal{T}:\mathbb{R}^n\to\mathbb{R}^n$ such that

$$f(A) = T(A^{\circ}), \quad \text{ for all } A \in \mathcal{K}_0^n.$$

• From an algebraic point of view all decreasing involutions on \mathcal{K}_0^n are equivalent.

let us recall that ...

Theorem (2008-2011):

Let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be a map such that for every $A, K \in \mathcal{K}_0^n$, (D1) f(f(A)) = A, (D2) $A \subseteq K$ then $f(A) \supseteq f(K)$.

Then there exists a symmetric linear isomorphism $\mathcal{T}:\mathbb{R}^n\to\mathbb{R}^n$ such that

$$f(A) = T(A^{\circ}), \quad \text{ for all } A \in \mathcal{K}_0^n.$$

• From an algebraic point of view all decreasing involutions on \mathcal{K}_0^n are equivalent.

イロト イボト イヨト イヨト 二日

• From a dynamical point of view this is not true!

Theorem 2 (L. F. Higueras-Montaño and N. J-P., 2022):

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a symmetric linear isomorphism and let $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ be defined as $f(A) = T(A^\circ)$. Then, the following statements hold.

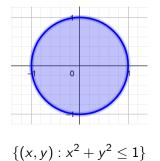
- If T is positive-definite, then f is conjugate with the polar mapping. In particular, f has a unique fixed point.
- If T is not positive-definite, then f has infinitely many fixed points.

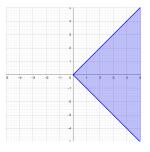
Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear isomorphism given by T(x, y) = (-x, y) and $f : \mathcal{K}_0^2 \to \mathcal{K}_0^2$ be defined by

 $f(A)=T(A^\circ)$

Then the following elements of \mathcal{K}_0^2 are fixed points of f:





 $\{(x,y):x\geq |y|\}$

Corollary

Every decreasing involution $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ with a unique fixed point is conjugate with the standard involution on Q. Moreover, f is of the form $f(A) = T(A^\circ)$ for some positive-definite linear isomorphism $T : \mathbb{R}^n \to \mathbb{R}^n$.

Corollary

Every decreasing involution $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ with a unique fixed point is conjugate with the standard involution on Q. Moreover, f is of the form $f(A) = T(A^\circ)$ for some positive-definite linear isomorphism $T : \mathbb{R}^n \to \mathbb{R}^n$.

Namely:

Every decreasing involution $f : \mathcal{K}_0^n \to \mathcal{K}_0^n$ with a unique fixed point is the polar map with respect to some inner product on \mathbb{R}^n .

(日) (四) (三) (三) (三) (三)

Again, these properties!!!

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A$ (α is an involution on \mathcal{K}_{0}^{n}).
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on Kⁿ₀).

Again, these properties!!!

For every $A, B \in \mathcal{K}_0^n$ the following hold:

- $A^{\circ} = A \iff A = \mathbb{B}^n$ (\mathbb{B}^n is the only fixed point of α).
- $(A^{\circ})^{\circ} = A$ (α is an involution on \mathcal{K}_{0}^{n}).
- If A ⊂ B, then B° ⊂ A° (α is decreasing with respect to the order given by the inclusion on K₀ⁿ).

These three properties characterize the polar involution(s) on \mathcal{K}_0^n

Remark:

• The order given by the inclusion \subset on \mathcal{K}_0^n defines a lattice structure, where the operations \land and \lor are given by

$$K \wedge L := K \cap L, \qquad K \vee L := \overline{\operatorname{conv}(K \cup L)}.$$

(日) (四) (三) (三) (三) (三)

• The Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$ has a lattice structure where the order \preceq is defined by

$$x \preceq y \iff x_n \leq y_n \text{ for every } n \in \mathbb{N},$$

and the operations \lor and \land are defined by

$$x \lor y := (\max\{x_i, y_i\})_i \qquad x \land y := (\min\{x_i, y_i\})_i.$$

• The Hilbert cube $Q = \prod_{n \in \mathbb{N}} [-1, 1]$ has a lattice structure where the order \preceq is defined by

$$x \preceq y \iff x_n \leq y_n \text{ for every } n \in \mathbb{N},$$

and the operations \lor and \land are defined by

$$x \lor y := (\max\{x_i, y_i\})_i \qquad x \land y := (\min\{x_i, y_i\})_i.$$

• The standard involution is decreasing with respect to \leq .

After Slomka's result (c.f. S. Arstein-Avidan and V. Milman), it is natural to ask the following weak version of Anderson's problem:

Question (Anderson's problem):

Let $\beta: Q \to Q$ be a continuous involution with a unique fixed point, Is β conjugate with the standard involution?

After Slomka's result (c.f. S. Arstein-Avidan and V. Milman), it is natural to ask the following weak version of Anderson's problem:

Question (Weak version of Anderson's problem): Let $\beta: Q \to Q$ be a continuous involution with a unique fixed point. Assume that there exists a lattice structure (\leq, \land, \lor) such that β is decreasing with respect to \leq . Is β conjugate with the standard involution?

(A. López Poo) If the lattice is modular (namely, if a ≤ b implies that a ∧ (x ∨ b) = (a ∧ x) ∨ b) and the operations ∨ and ∧ are continuous (such as it happens with the natural lattice structure on Q), then the answer is yes.

- (A. López Poo) If the lattice is modular (namely, if a ≤ b implies that a ∧ (x ∨ b) = (a ∧ x) ∨ b) and the operations ∨ and ∧ are continuous (such as it happens with the natural lattice structure on Q), then the answer is yes.
- Notice that the operations ∨ and ∧ are not continuous on Kⁿ₀ and the lattice structure is not modular.

References:

- S. A. Antonyan, Some open problems in equivariant infinite-dimensional topology, Topol. Appl. (2022) 107966.
- J. van Mill and J. West, *Involutions of* ℓ_2 and *s with unique fixed points*, Trans. Amer. Math. Soc. 373 (2020) 7327–7346.
- S. Artstein-Avidan and V. Milman, A characterization of the concept of duality. Electron. Res. Announc. Math. Sci. 14 (2007) 42–59.
- B. Slomka, On duality and endomorphisms of lattices of closed convex sets, Adv. Geom. 11, 2 (2011), 225-239.
- L. F. Higueras Montaño and N. Jonard-Pérez, A topological insight into the polar involution of convex sets, Israel Journal of Mathematics (2024) https://doi.org/10.1007/s11856-024-2622-0

Thank you!