An Algorithm to Detect Non-Order Preserving Braids Joint with J. Johnson and H. Turner

Nancy Scherich Elon University, NC USA

What is a *biorder* on a group? When is a group *biorderable*?

Definition:

A **biorder** on a group G is a strict total ordering that is invariant under **both** left and right "multiplication".

A group is biorderable if there exists a biordering of its elements.

What is a *biorder* on a group? When is a group biorderable?

Definition:

A **biorder** on a group G is a strict total ordering that is invariant under **both** left and right "multiplication".

A group is *biorderable* if there exists a biordering of its elements.

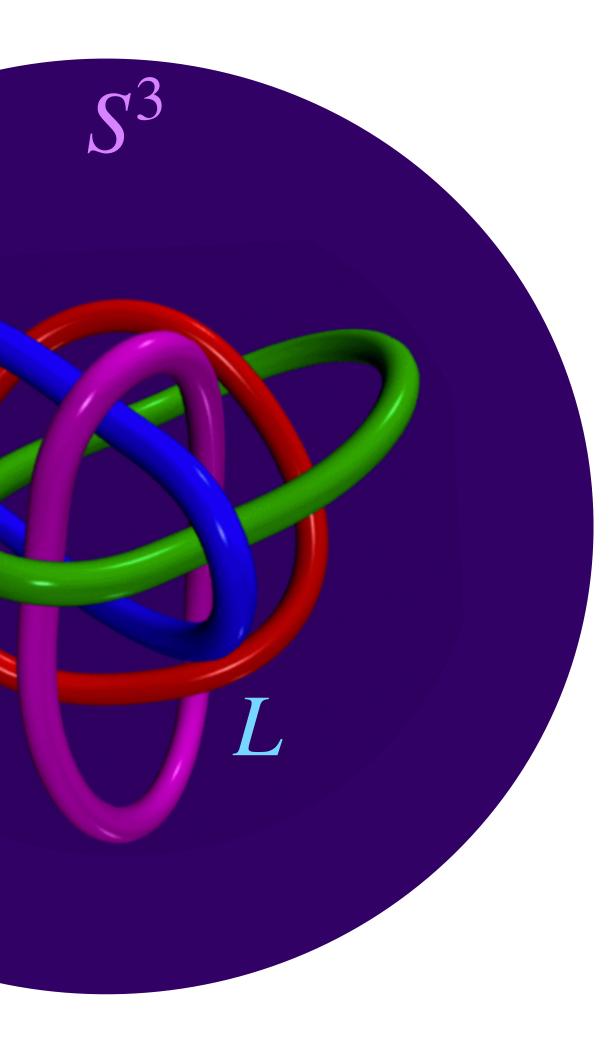
Example: The integers are biorderable.

Addition is a translation ...-3 -2 -1 0 1 2 3... **non-Example:** Torsion is not biorderable.

- 0 < 1 < 2 < 3
- 2+0 < 2+1 < 2+2 < 2+3
 - 2 < 3 < 0 < 1

Why bi-order a group? **Motivation from 3-mfd topology**

 $\pi_1(S^3 - L) = \pi_1(L)$

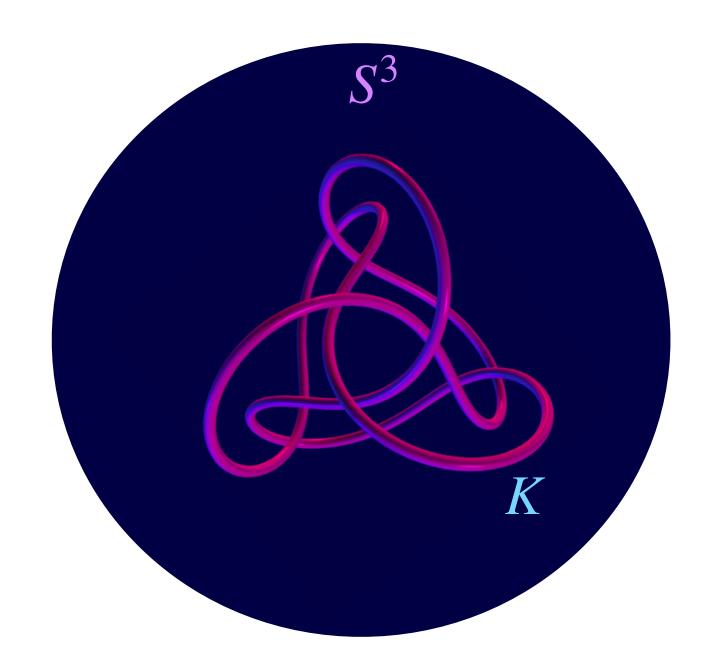


Boyer-Rolfsen-Wiest (2005):

 $\pi_1(L)$ is left orderable.

Say "*L* is left-orderable"

Why bi-order a group? **Motivation from 3-mfd topology**

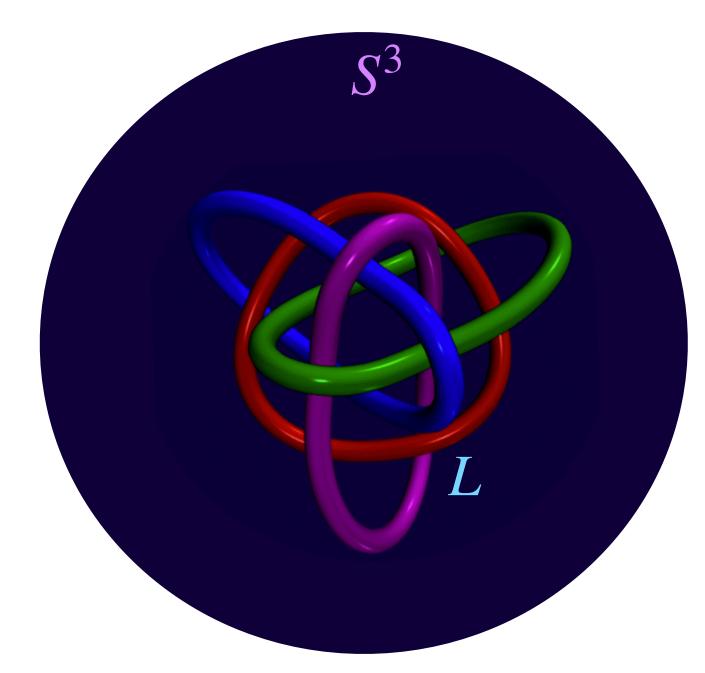


Clay-Rolfsen (2012):

 $\pi_1(K)$ is biorderable

 $\Rightarrow K$ is NOT an L-space knot

(No nontrivial surgery is an L-space)

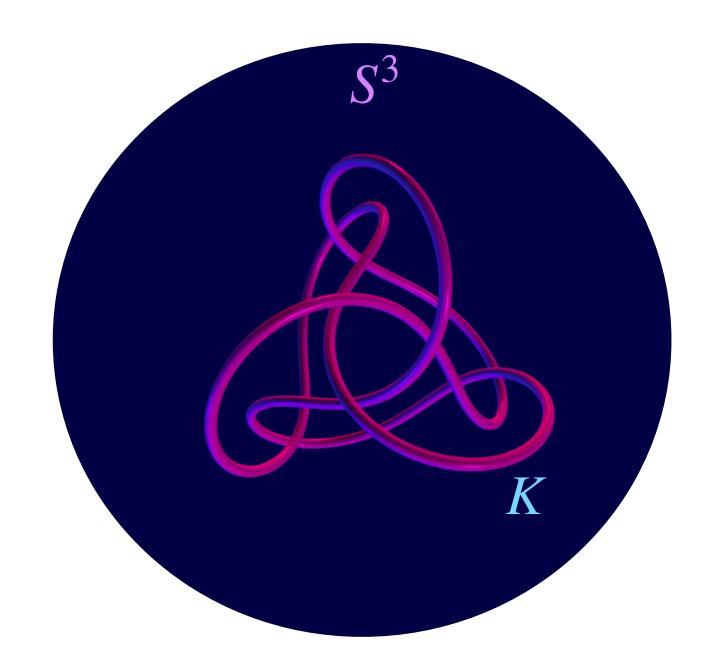


Knots vs Links

There exists links that are biorderable AND L-space links.

(Complement BO but you get a new space that is NOT left orderable by L-Conj)

Why bi-order a group? **Motivation from 3-mfd topology**

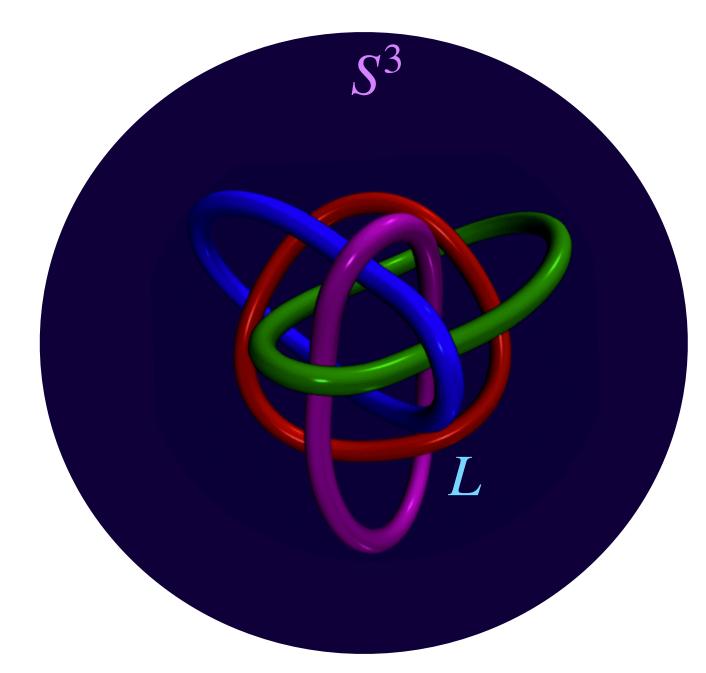


Clay-Rolfsen (2012):

 $\pi_1(K)$ is biorderable

 \Rightarrow K is NOT an L-space knot

(No nontrivial surgery is an L-space)



Knots vs Links

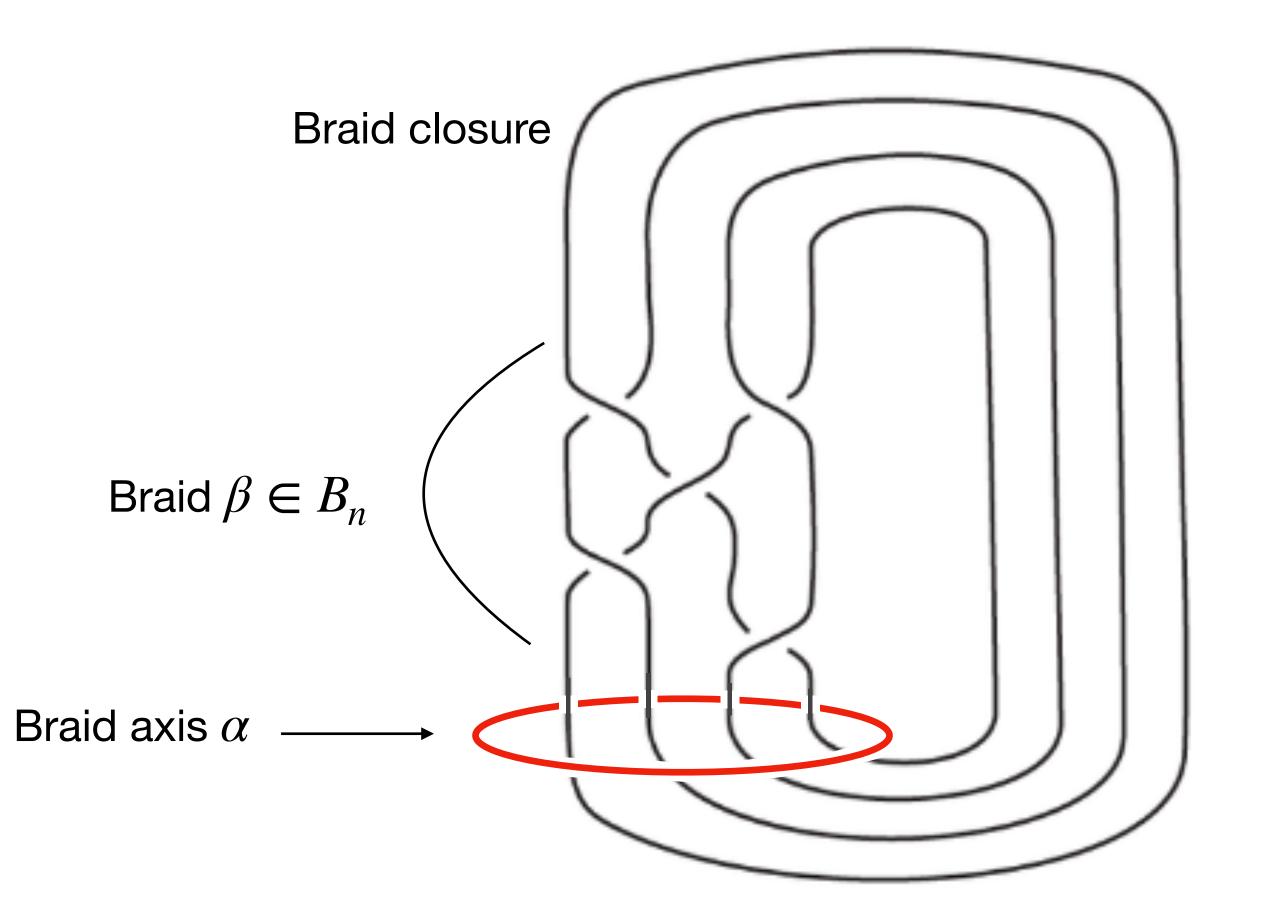
There exists links that are biorderable AND L-space links.

(Complement BO but you get a new space that is NOT left orderable by L-Conj)

Question: Which links are biorderable?

Which links are biorderable? Which braided links are biorderable?

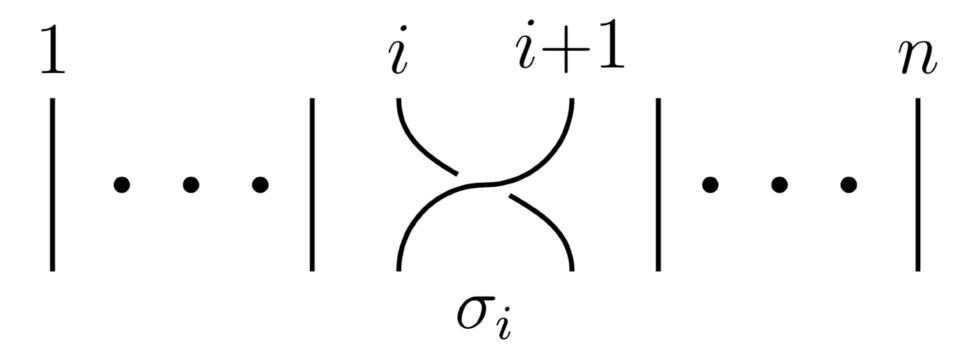
Which links are biorderable? Which braided links are biorderable?



Braided link $L = \beta \cup \alpha$

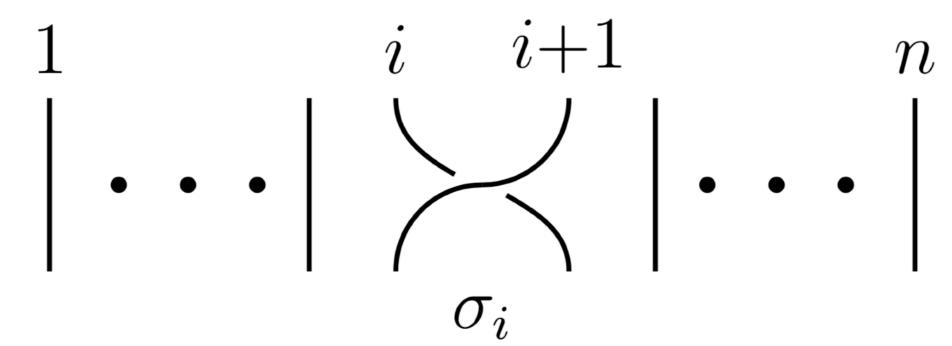
 B_n is the group of braids on *n* strands

Generators

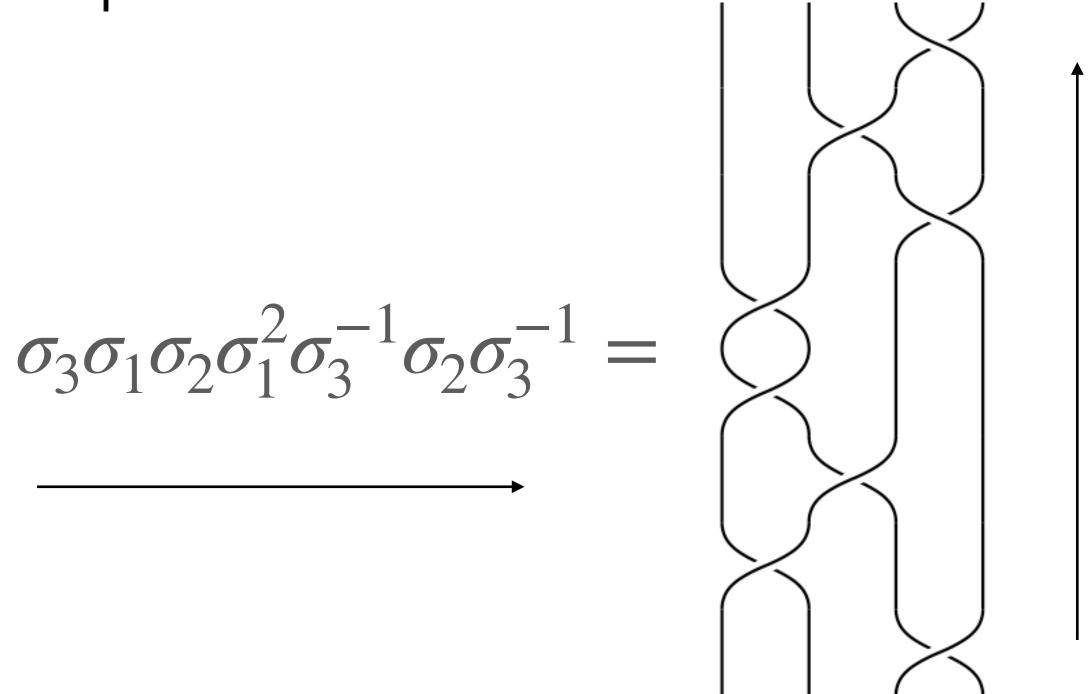


 B_n is the group of braids on *n* strands

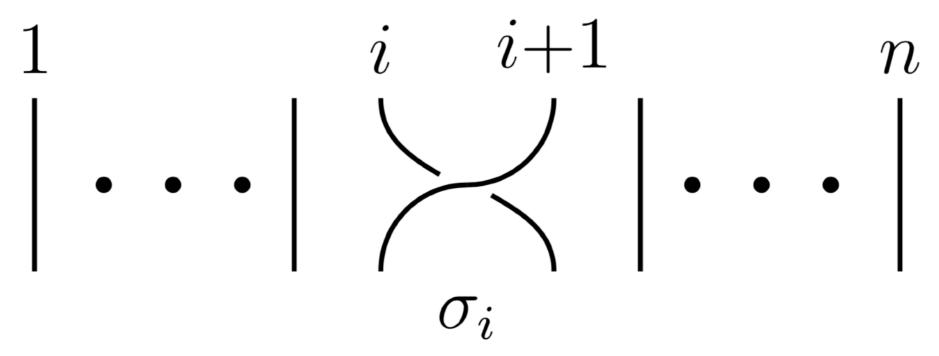
Generators



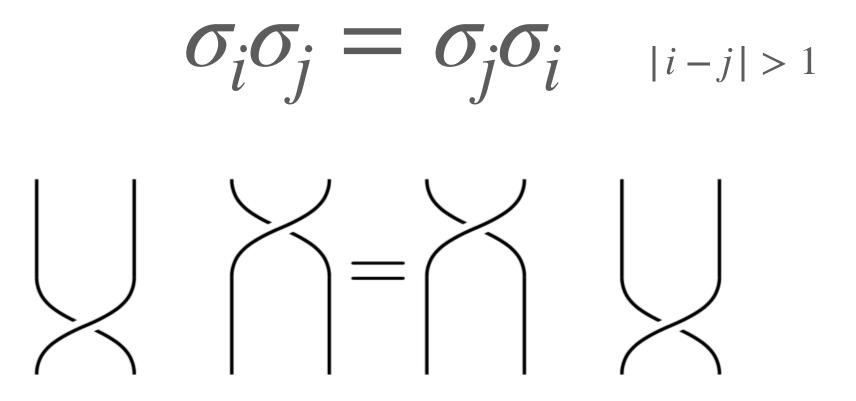
 B_n is the group of braids on *n* strands



Generators

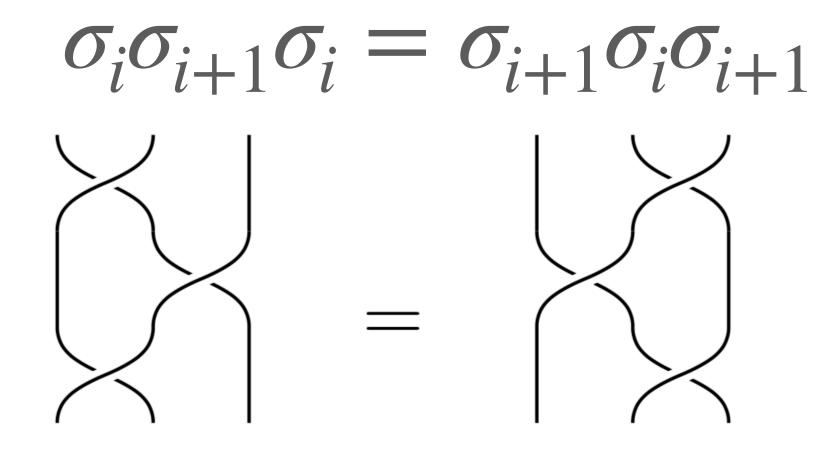


Far commutativity relation



B_n is the group of braids on *n* strands

The braid relation

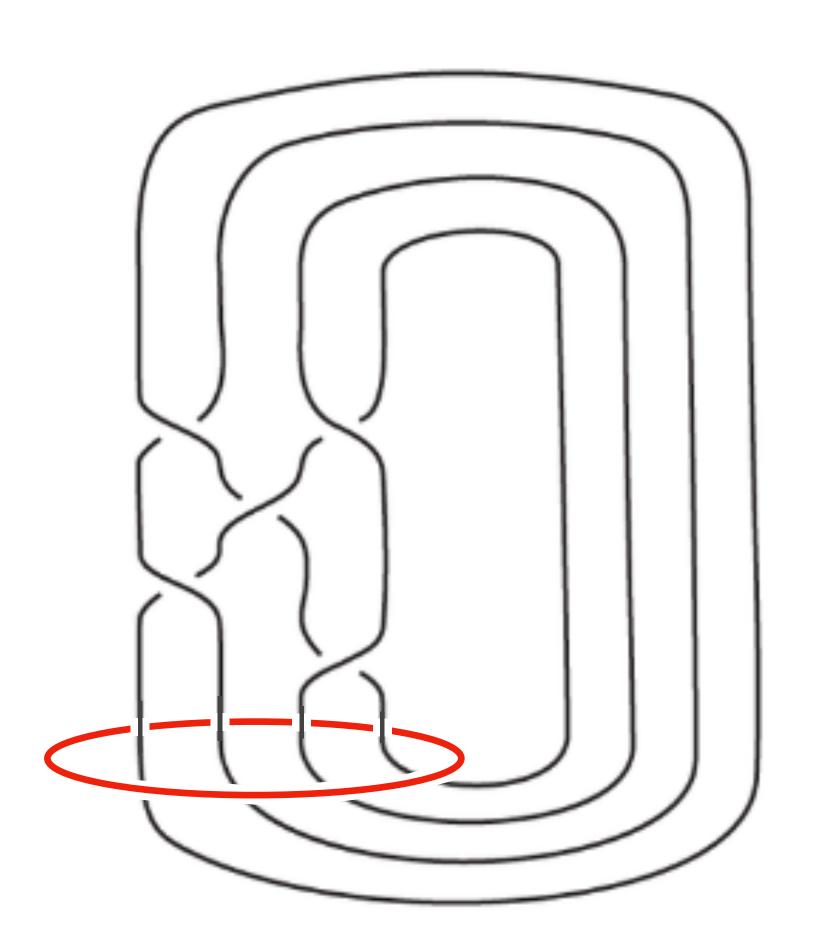


Which braided links are biorderable?

Algorithm (Johnson-S.-Turner 2024)

Theorem (Johnson-S.-Turner 2024)

The braided link $\sigma_1 \sigma_2^{-3}$ is NOT order preserving. The braided links $\sigma_1 \sigma_2^{2k+1}$ are NOT order preserving.



Inspired by an algorithm of Calagari-Dunfield for left-orderable groups

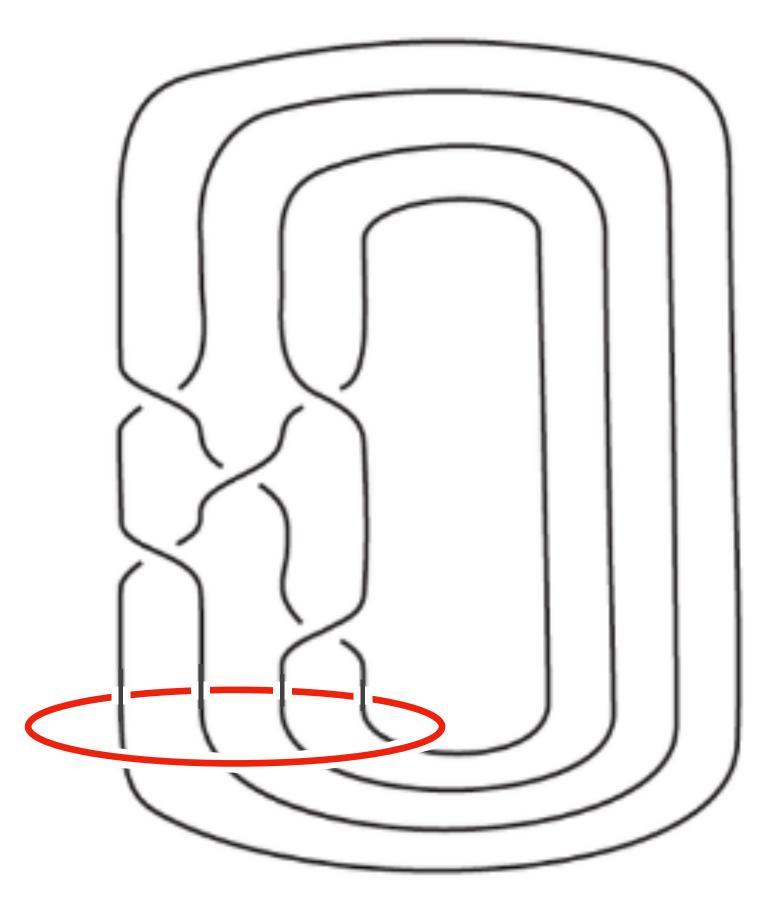
If a braided link is NOT biorderable then the algorithm returns "no" and a proof that the link is not biorderable.

If a braided link is biorderable

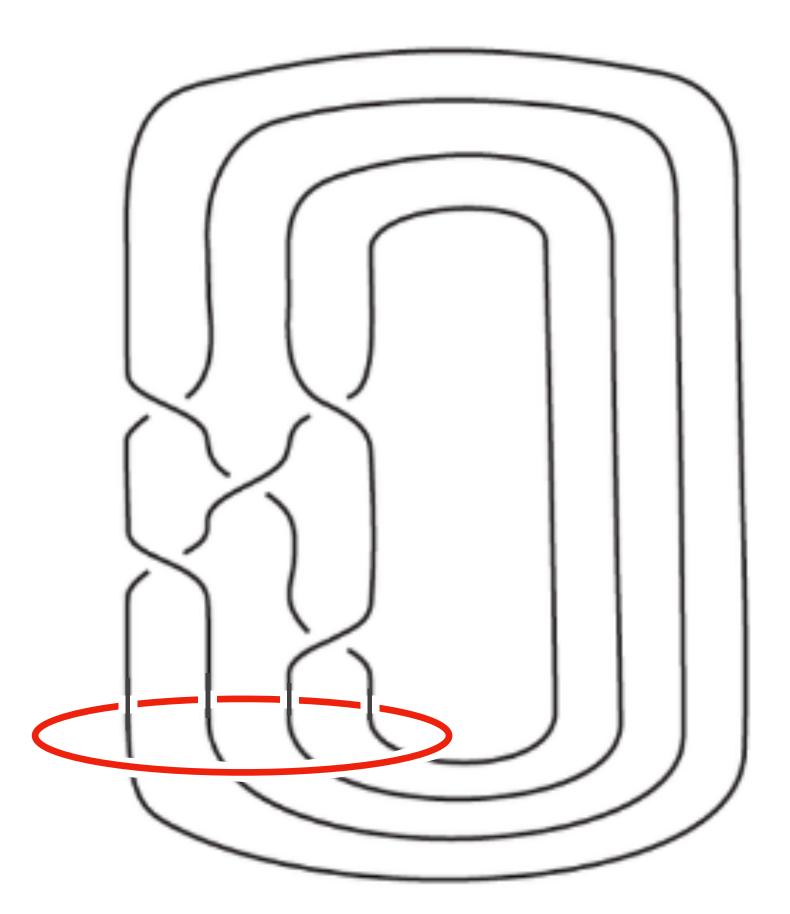
then the algorithm does not terminate.

Implemented in Python Available on GitHub

Key Theorem for braided links



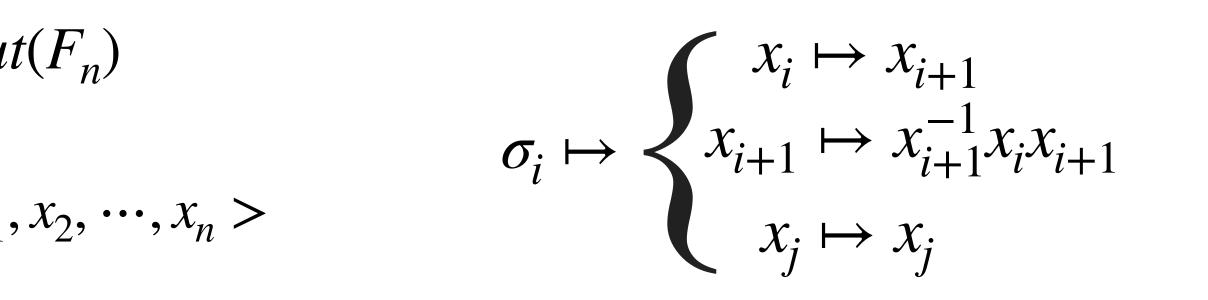
Key Theorem for braided links



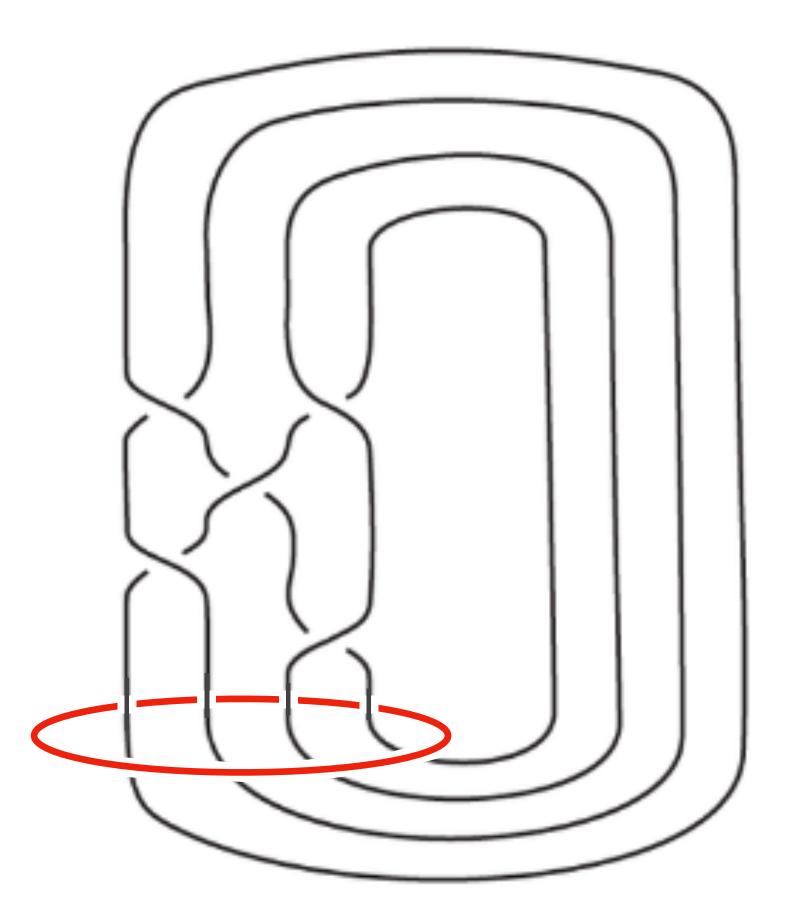
Braids act on the Free group

$$B_n \to Aut$$

$$F_n = \langle x_1,$$



Key Theorem for braided links



Braids act on the Free group

$$B_n \to Aut(F_n)$$

$$F_n = \langle x_1, x_2, \cdots, x_n \rangle$$

$$\sigma_i \mapsto \begin{cases} x_i \mapsto x_{i+1} \\ x_{i+1} \mapsto x_{i+1}^{-1} x_i x_{i+1} \\ x_j \mapsto x_j \end{cases}$$

$$\begin{split} B_n &\to Aut(F_n) \\ F_n &= \langle x_1, x_2, \cdots, x_n \rangle \end{split} \qquad \sigma_i \mapsto \begin{cases} x_i \mapsto x_{i+1} \\ x_{i+1} \mapsto x_{i+1}^{-1} x_i x_{i+1} \\ x_j \mapsto x_j \end{cases} \end{split}$$

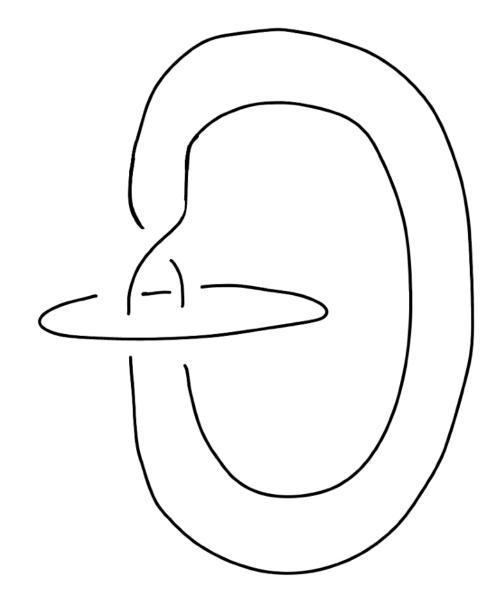
A braided link is biorderable

Kin-Rolfsen (2018)

There exists biordering of the free group that is invariant under the action of β .

i.e. if x < y then $\beta(x) < \beta(y)$

Say " β is order preserving" or "OP"



 σ_1 acts on F_2

 $\sigma_1 \mapsto \begin{cases} x_1 \mapsto x_2 & \text{Try to put a biorder on } F_2 \text{ that is preserved by } \sigma_1 \\ x_2 \mapsto x_2^{-1} x_1 x_2 \\ x_i \mapsto x_i \end{cases}$

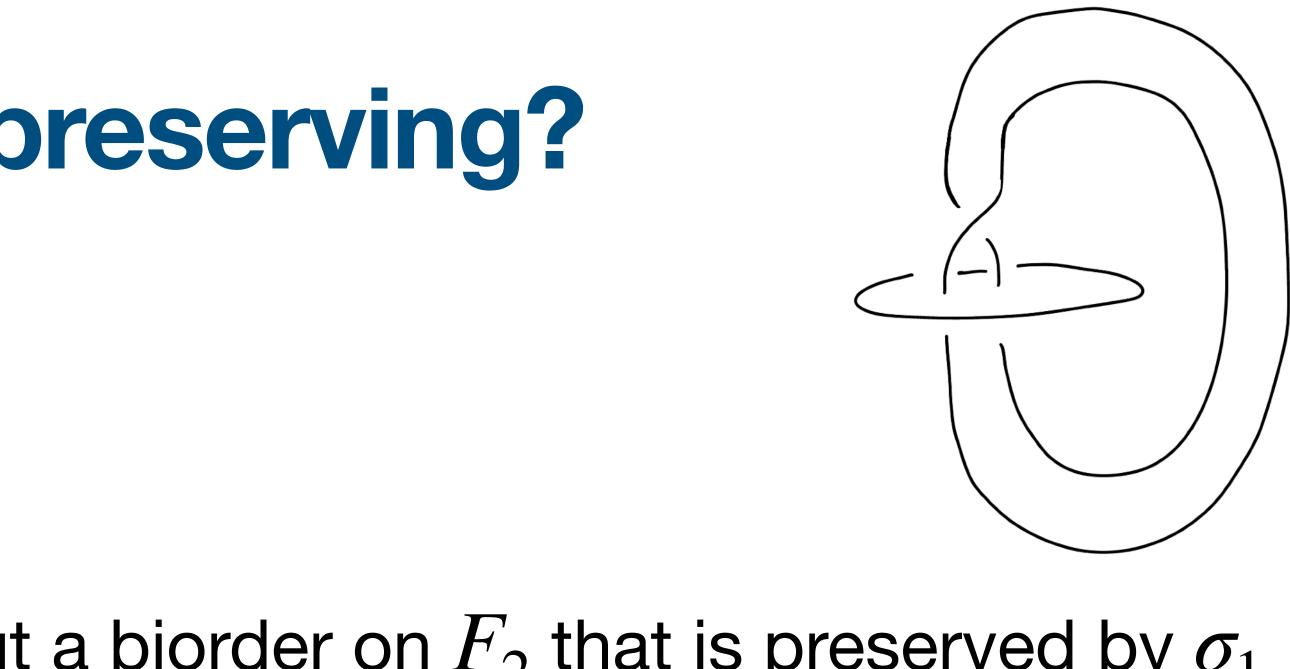
 σ_1 acts on F_2

 $\sigma_1 \mapsto \begin{cases} x_1 \mapsto x_2 & \text{Try to put a biorder on } F_2 \text{ that is preserved by } \sigma_1 \\ x_2 \mapsto x_2^{-1} x_1 x_2 & \text{Suppose } x_1 < x_2 \\ x_j \mapsto x_j & \end{cases}$



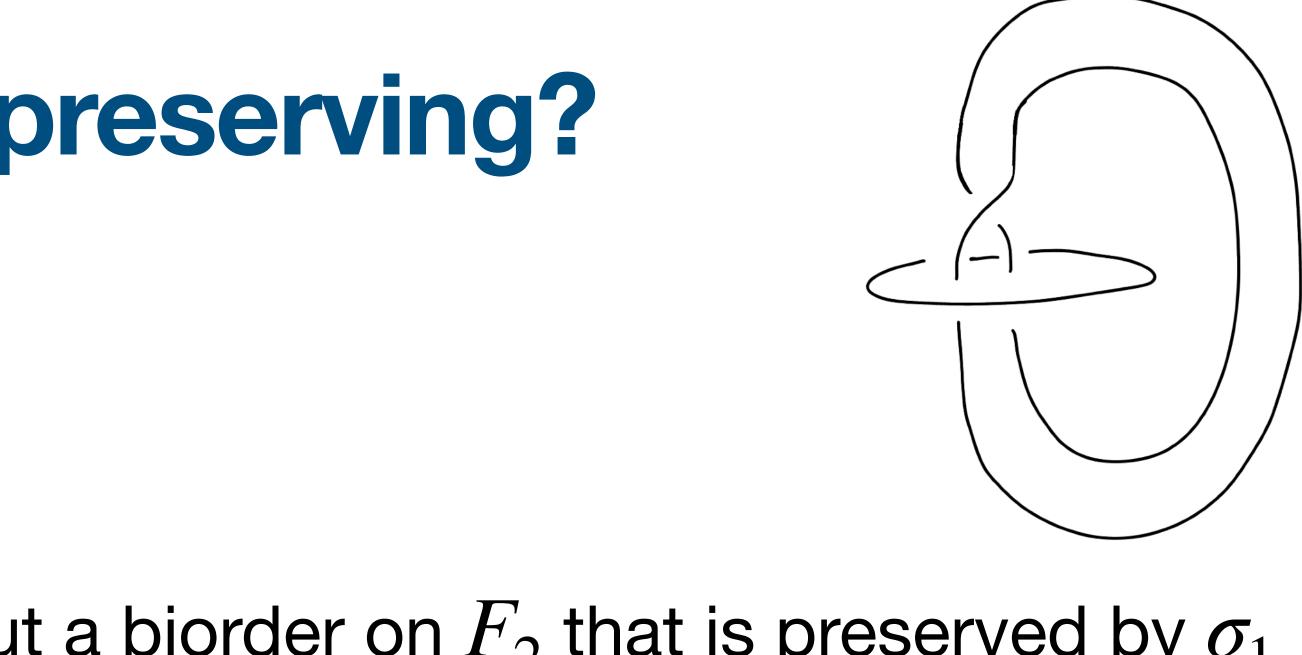
 σ_1 acts on F_2

 $\sigma_{1} \mapsto \begin{cases} x_{1} \mapsto x_{2} & \text{Try to put a biorder on } F_{2} \text{ that is preserved by } \sigma_{1} \\ x_{2} \mapsto x_{2}^{-1}x_{1}x_{2} & \text{Suppose } x_{1} < x_{2} \\ x_{j} \mapsto x_{j} & \Rightarrow \sigma_{1}(x_{1}) < \sigma_{1}(x_{2}) \end{cases}$



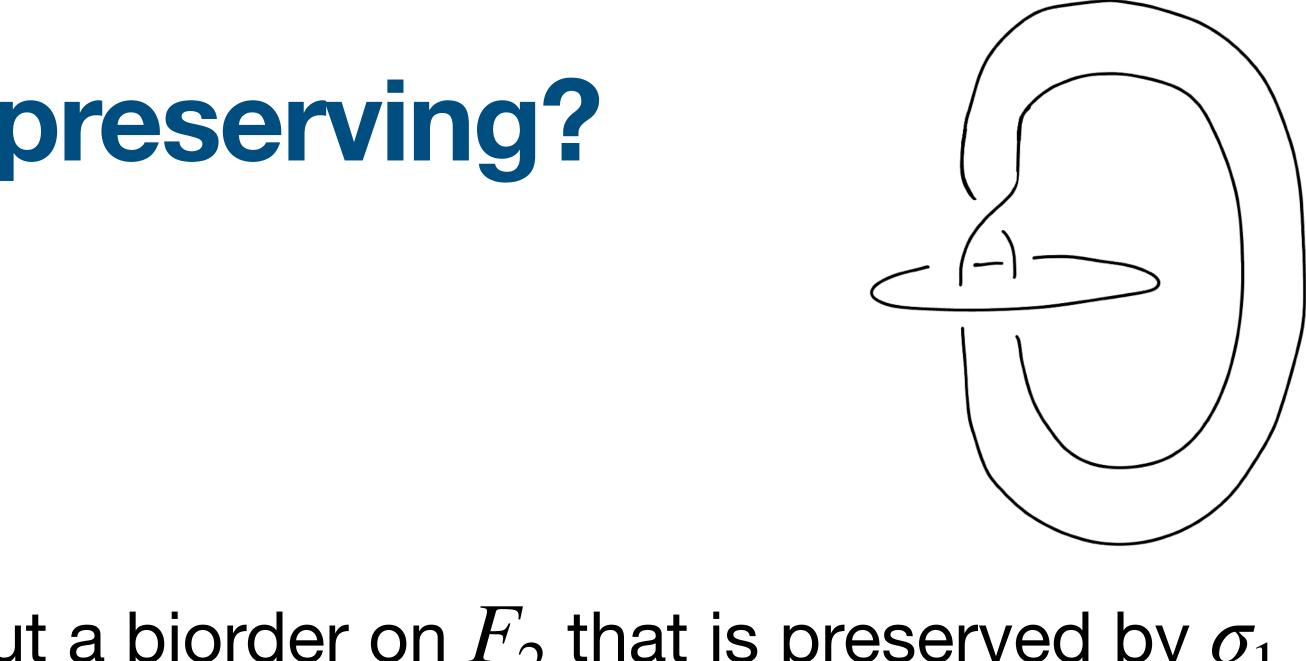
 σ_1 acts on F_2

 $\sigma_{1} \mapsto \begin{cases} x_{1} \mapsto x_{2} \\ x_{2} \mapsto x_{2}^{-1}x_{1}x_{2} \\ x_{j} \mapsto x_{j} \end{cases}$ Try to put a biorder on F_{2} that is preserved by σ_{1} Suppose $x_{1} < x_{2}$ $\Rightarrow \sigma_{1}(x_{1}) < \sigma_{1}(x_{2})$ $\Rightarrow x_{2} < x_{2}^{-1}x_{1}x_{2}$



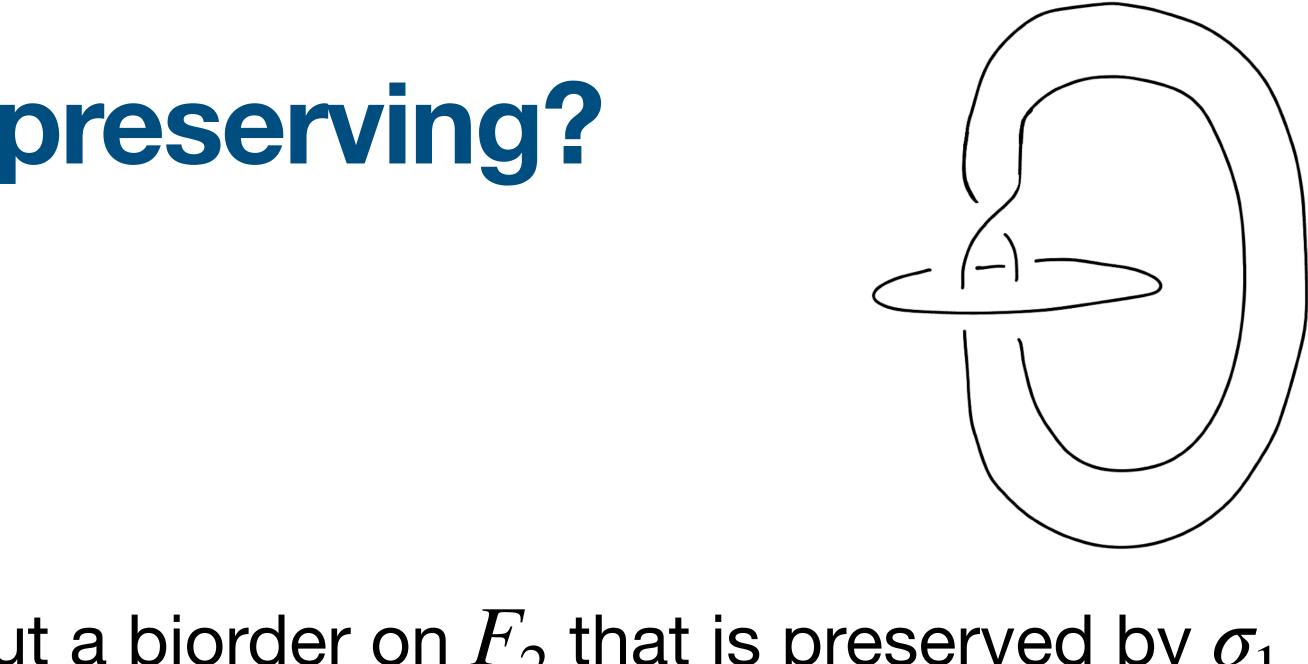
 σ_1 acts on F_2

 $\sigma_{1} \mapsto \begin{cases} x_{1} \mapsto x_{2} \\ x_{2} \mapsto x_{2}^{-1}x_{1}x_{2} \\ x_{j} \mapsto x_{j} \end{cases} \text{ Try to put a biorder on } F_{2} \text{ that is preserved by } \sigma_{1} \\ \text{Suppose } x_{1} < x_{2} \\ \Rightarrow \sigma_{1}(x_{1}) < \sigma_{1}(x_{2}) \\ \Rightarrow x_{2} < x_{2}^{-1}x_{1}x_{2} \\ \Rightarrow x_{2}x_{2}x_{2}^{-1} < x_{1} \end{cases}$



 σ_1 acts on F_2

 $\sigma_1 \mapsto \begin{cases} x_1 \mapsto x_2 & \text{Try to put a biorder on } F_2 \text{ that is preserved by } \sigma_1 \\ x_2 \mapsto x_2^{-1} x_1 x_2 & \text{Suppose } x_1 < x_2 \\ x_j \mapsto x_i & \end{cases}$ $\Rightarrow \ \sigma_1(x_1) < \sigma_1(x_2)$ $\Rightarrow \qquad x_2 < x_2^{-1} x_1 x_2$ $\Rightarrow x_2 x_2 x_2^{-1} < x_1$ $x_2 < x_1$

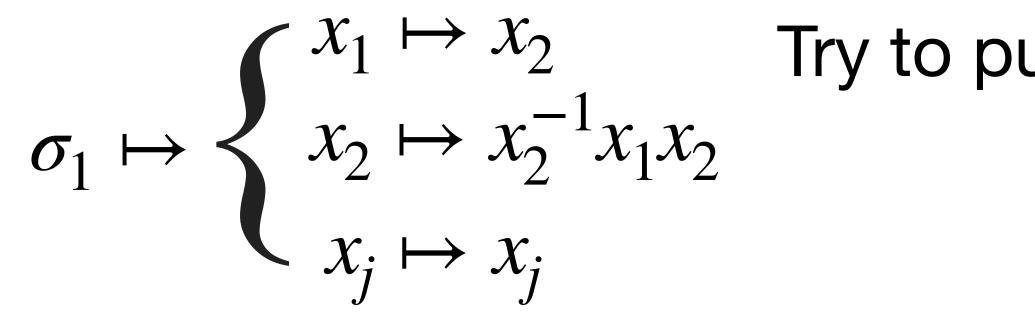


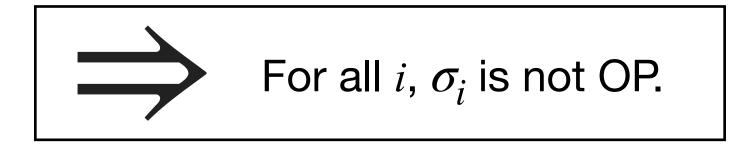
 σ_1 acts on F_2

 $\sigma_1 \mapsto \begin{cases} x_1 & \neg & x_2 \\ x_2 & \mapsto & x_2^{-1} x_1 x_2 \\ x_i & \mapsto & x_i \end{cases}$

Try to put a biorder on F_2 that is preserved by σ_1 Suppose $x_1 < x_2$. $\Rightarrow \quad \sigma_1(x_1) < \sigma_1(x_2)$ $\Rightarrow \quad x_2 < x_2^{-1} x_1 x_2$ $\Rightarrow x_2 x_2 x_2^{-1} < x_1$ $\Rightarrow x_2 < x_1 < \cdot$

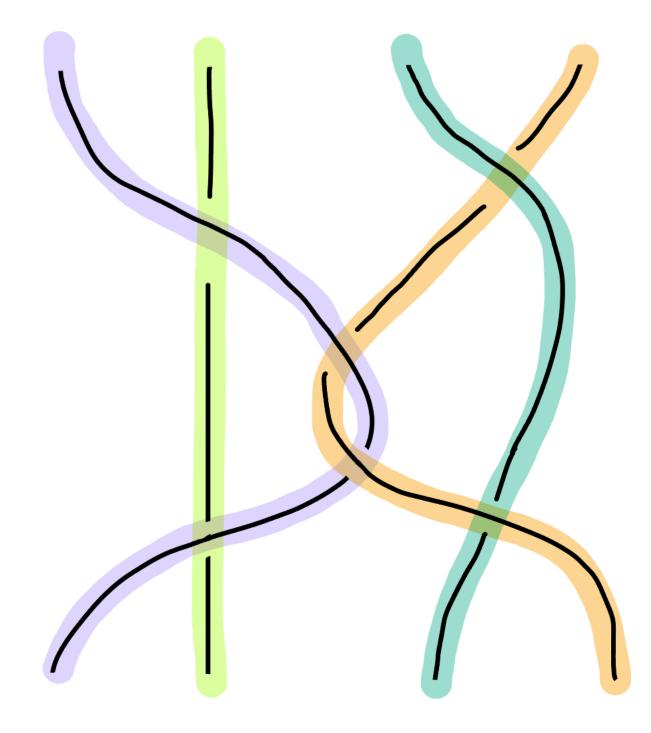
σ_1 acts on F_2





Try to put a biorder on F_2 that is preserved by σ_1 Suppose $x_1 < x_2$. $\Rightarrow \quad \sigma_1(x_1) < \sigma_1(x_2)$ $\Rightarrow \quad x_2 < x_2^{-1} x_1 x_2$ $\Rightarrow x_2 x_2 x_2^{-1} < x_1$ $\Rightarrow x_2 < x_1 < \cdot$

Example: Pure braids are order preserving.

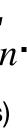


 β is a pure braid

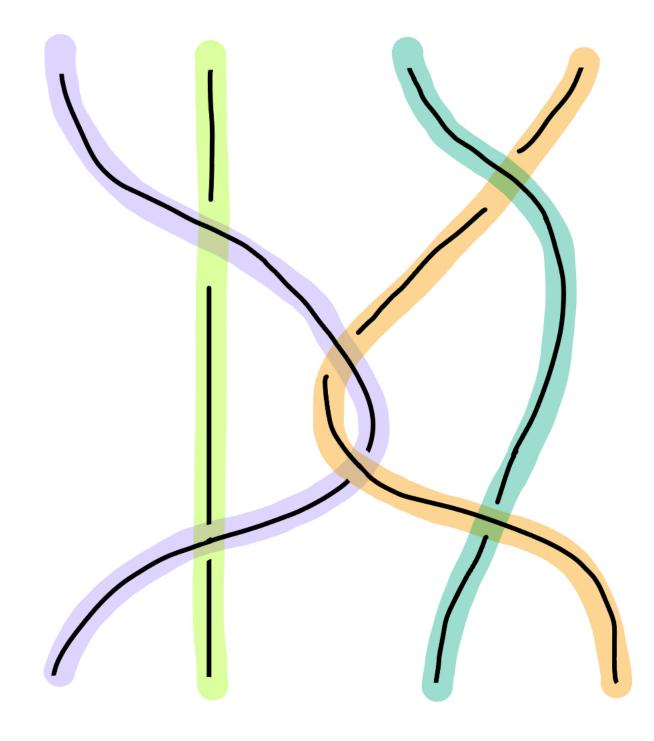
Kin-Rolfsen (2018)

 β preserves every standard order of F_n .

(Standard orders on F_n are defined using lower central series)



Example: Pure braids are order preserving.



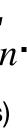
β is a pure braid

Kin-Rolfsen (2018)

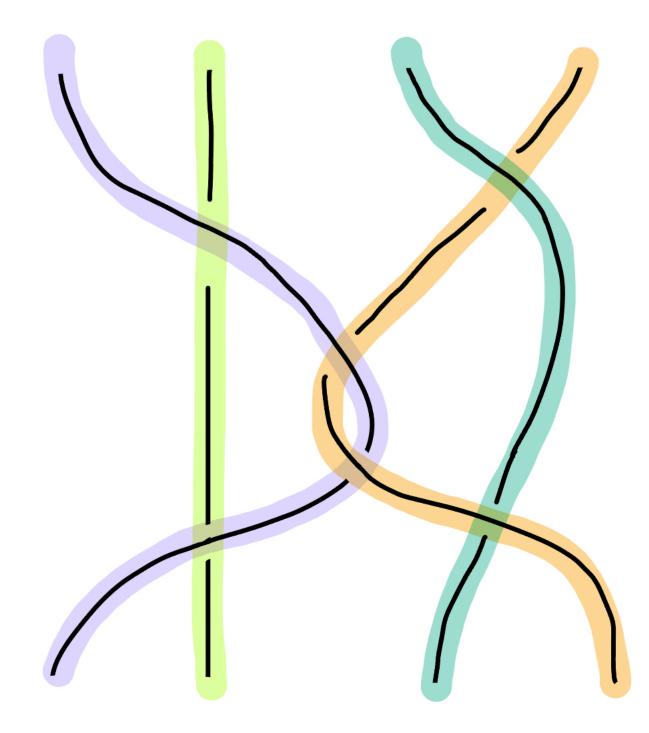
 β preserves every standard order of F_n .

(Standard orders on F_n are defined using lower central series)

 σ_i^2 is a pure braid, so is OP. (Even though σ_i is not OP!)



Example: Pure braids are order preserving.



β is a pure braid

Kin-Rolfsen (2018)

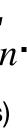
 β preserves every standard order of F_n .

(Standard orders on F_n are defined using lower central series)

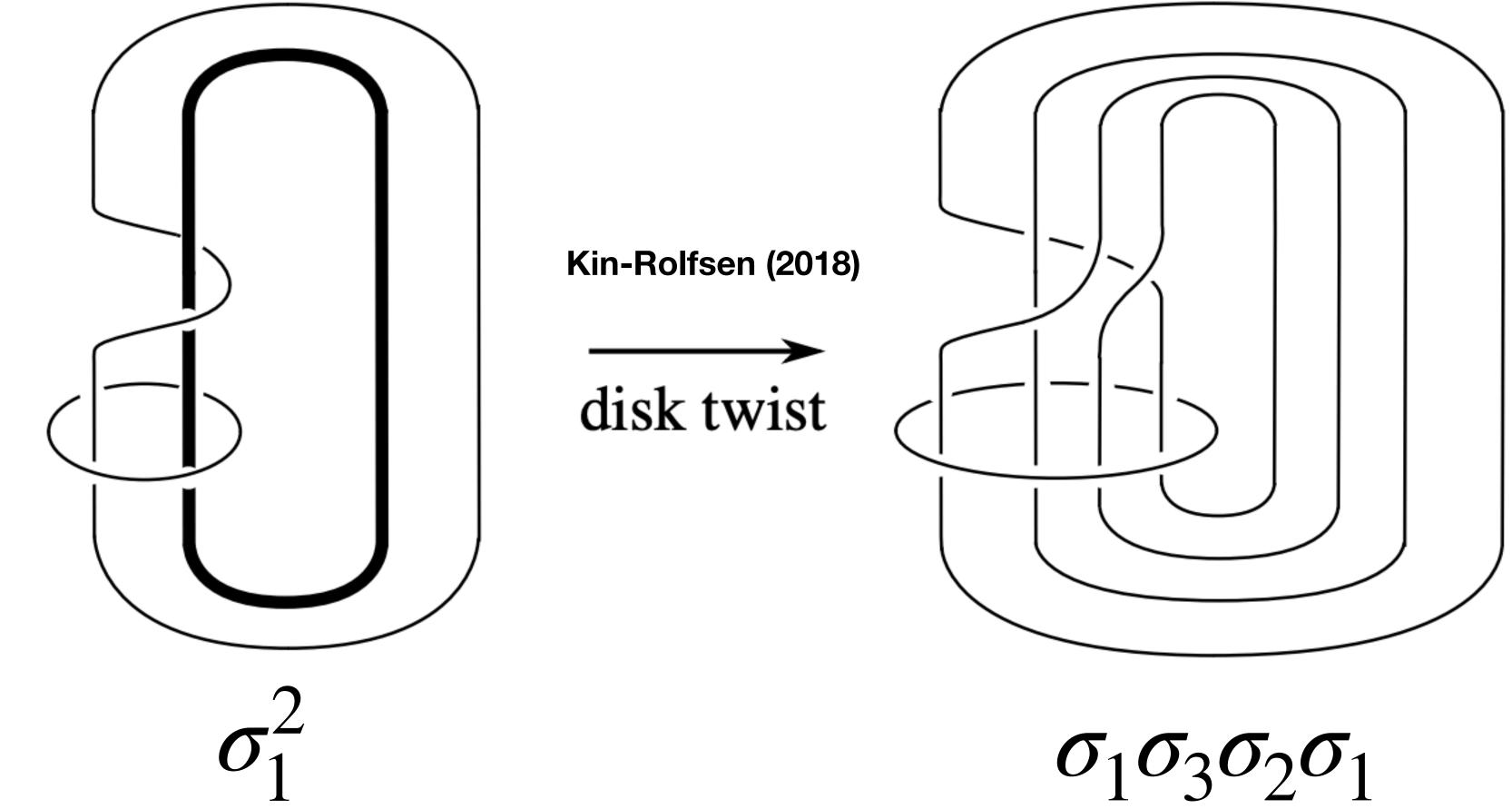
$$\sigma_i^2$$
 is a pure braid, so is OP.

(Even though σ_i is not OP!)

For every braid β , there is an integer k for which β^k is a pure braid, so β^k is OP.

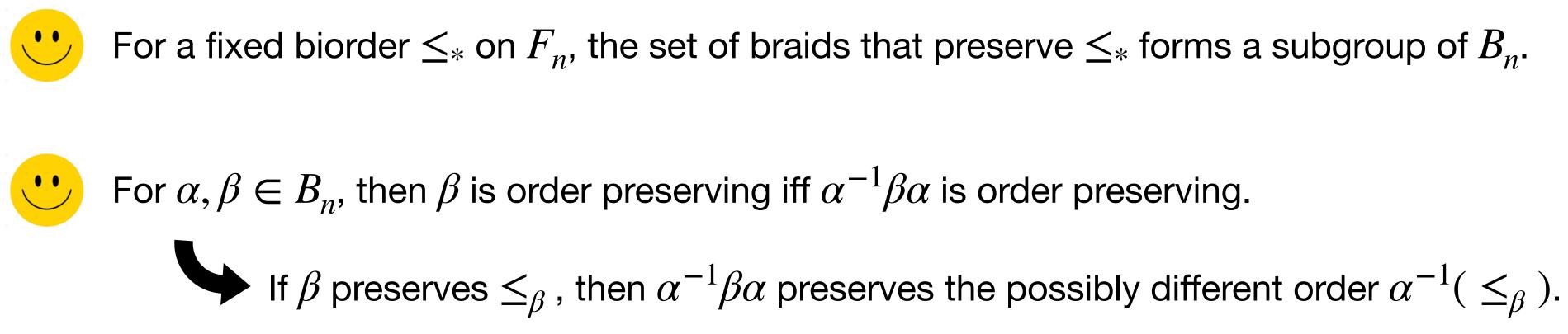


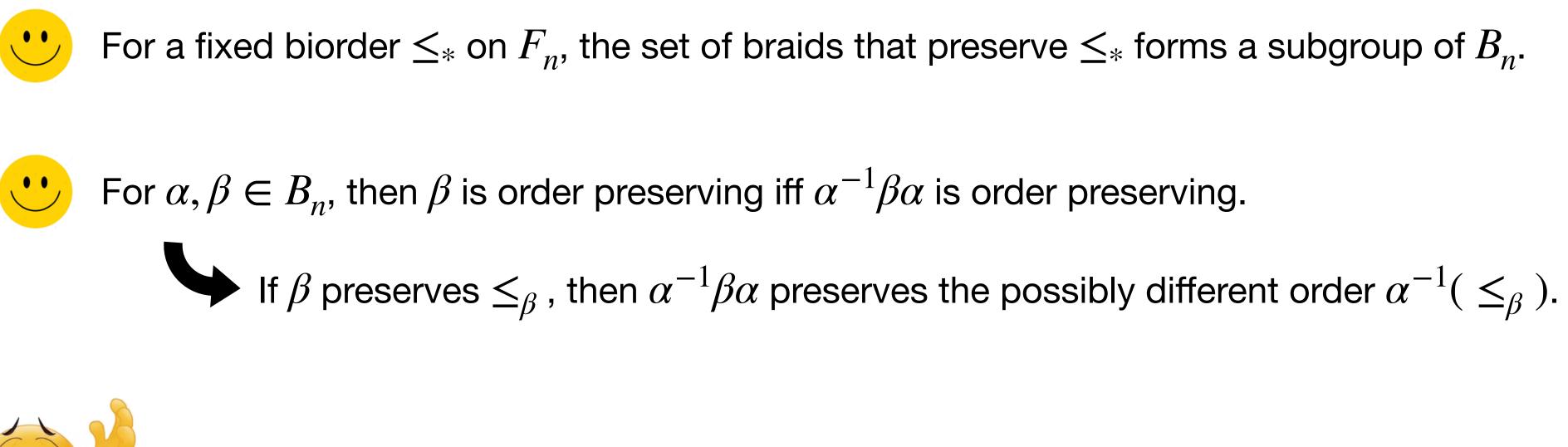
Example: $\sigma_1 \sigma_3 \sigma_2 \sigma_1$ is order preserving and not pure!



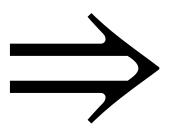
For a fixed biorder \leq_* on F_n , the set of braids that preserve \leq_* forms a subgroup of B_n .

For a fixed biorder \leq_* on F_n , the set of braids that preserve \leq_* forms a subgroup of B_n .





For $\alpha, \beta \in B_n$ both order preserving, $\alpha \cdot \beta$ may or may not be order preserving.



- The set of order preserving braids is not a subgroup!

How the algorithm works Input a braid β ∈ B_n Attempt to build all biorders on F_n preserved by β, look for contradictions along the way.

How the algorithm works Input a braid $\beta \in B_n$ Positive cones Attempt to build all biordore on F_n preserved by β , look for contradictions along the way.

How the algorithm works Input a braid $\beta \in B_n$ Positive cones Attempt to build all biorders on F_n preserved by β , **Positive cones** look for contradictions along the way.

 $x < y \text{ iff } 0 < x^{-1}y \text{ iff } x^{-1}y \in P$

Give a biorder on a group

*preserved by β If x < y then $\beta(x) < \beta(y)$

Give a positive cone of the group.

A positive cone P of a group G is

A. $P \subset G$ B. $P \cdot P \subset G$ C. For all $x \in G$, $x^{-1}Px \in P$ D. For all $x \in G$, either $x \in P$ or $x^{-1} \in P$ *preserved by β , i.e. $\beta(P) \subset P$

How the algorithm works Input a braid $\beta \in B_n$ k-precones Attempt to build all biendore on F_n preserved by β , look for contradictions along the way.

How the algorithm works Input a braid $\beta \in B_n$ k-precones Attempt to build all biordors on F_n preserved by β , look for contradictions along the way.

Ball in F_n of reduced words with length $\leq k$

