Presentation by

Pratulananda Das

Department of Mathematics, Jadavpur University, West Bengal, India.

Date: 9th July, 2024

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Introduction and Background

2 Literature Review and Problem Formulation

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3 Our Approach

4 Conclusion and Future Scope

Background

- An element x of an abelian group G is torsion if there exists k ∈ N such that kx = 0.
- Similarly, an element x of an abelian topological group G is [Braconnier, 1944]:
 - (i) topologically torsion if $n!x \rightarrow 0$;
 - (ii) topologically p-torsion, for a prime p, if $p^n x \to 0$.
- Consider the subgroups [Armacost, 1981]

$$\mathbb{T}_p = \{ x \in \mathbb{T} : p^n x \to 0 \} \text{ and } \mathbb{T}! = \{ x \in \mathbb{T} : n! x \to 0 \}.$$

 \mathbb{T}_p is actually the Prufer group [Armacost] while the characterization of \mathbb{T} ! was obtained by [Borel, 1991]

Characterized subgroup

Definition

[for example see Dikranjan, Impieri, 2014] Let (a_n) be a sequence of integers, the subgroup

$$t_{(a_n)}(\mathbb{T}):=\{x\in\mathbb{T}:a_nx
ightarrow0 ext{ in }\mathbb{T}\}$$

of \mathbb{T} is called a characterized (by (a_n)) subgroup of \mathbb{T} .

Arithmetic Sequence

A sequence of positive integers (a_n) is called an arithmetic sequence if

$$1 < a_1 < a_2 < a_3 < \ldots < a_n < \ldots$$
 and $a_n | a_{n+1}$

for overy n C N

Statistical convergence

For $A \subseteq \mathbb{N}$, the upper and lower natural density of A is defined by

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{|A \cap [1, n]|}{n} \text{ and } \overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap [1, n]|}{n}.$$
(1)

We say that d(A) exists if $\underline{d}(A) = d(A)$.

Definition [Fast, Steinhaus, 1951]

A sequence (x_n) in \mathbb{T} is said to converge to an $x_0 \in \mathbb{T}$ statistically if for any $\varepsilon > 0$, $d(\{n \in \mathbb{N} : ||x_n - x_0|| \ge \varepsilon\}) = 0$.

Statistically characterized subgroups

s-torsion element

[Dikranjan, Das, Bose, 2020] Let (a_n) be a sequence of integers. An element x in \mathbb{T} is called topologically s-torsion element if $a_n x \to 0$ s-statistically in \mathbb{T} .

s-characterized Subgroup [Dikranjan, Das, Bose, 2020]

Let (a_n) be a sequence of integers, the subgroup

 $t^s_{(a_n)}(\mathbb{T}) := \{x \in \mathbb{T} : a_n x \to 0 \text{ statistically in } \mathbb{T}\}$

of \mathbb{T} is called an *s*-characterized (by (a_n)) subgroup of \mathbb{T} .

Fact

[Dikranjan, Impieri, 2014] For any arithmetic sequence (a_n) and $x \in \mathbb{T}$, we can build a unique sequence of integers (c_n) , where $0 \leq c_n < q_n$, such that

$$x = \sum_{n=1}^{\infty} \frac{c_n}{a_n}$$

(2)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

and $c_n < q_n - 1$ for infinitely many n.

Support

[Dikranjan, Impieri, 2014] For $x \in \mathbb{T}$ with canonical representation (2), we define

•
$$supp(x) = \{n \in \mathbb{N} : c_n \neq 0\};$$

•
$$supp_q(x) = \{n \in \mathbb{N} : c_n = q_n - 1\}.$$

Clearly $supp_q(x) \subseteq supp(x)$.

For two subsets A, B of \mathbb{N} , we will write $A \subseteq^{s} B$ if $d(A \setminus B) = 0$ and $A =^{s} B$ if $d(A \triangle B) = 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへ⊙

Literature Review and Problem Formulation

Outline

1 Introduction and Background

2 Literature Review and Problem Formulation

3 Our Approach

4 Conclusion and Future Scope

Some important observations regarding characterized subgroups [Dikranjan, Impieri, 2014]

Borel Complexity

For any sequence of integers (a_n) , the subgroup $t_{(a_n)}(\mathbb{T})$ is an $F_{\sigma\delta}$ (hence, Borel) subgroup of \mathbb{T} .

Cardinality

For an arithmetic sequence (a_n) , the subgroup $t_{(a_n)}(\mathbb{T})$ is countable if and only if the sequence of ratios $(\frac{a_{n+1}}{a_n})$ is bounded.

Characterization for being a topologically torsion element

Let, (a_n) be an arithmetic sequence and $x \in \mathbb{T}$. Then x is a topologically torsion element (i.e., $x \in t_{(a_n)}(\mathbb{T})$) if and only if either supp(x) is finite or if supp(x) is infinite then for all infinite $A \subseteq \mathbb{N}$ the following holds:

(a) If A is q-bounded, then: (a1) If $A \subseteq^* supp(x)$, then $A + 1 \subseteq^* supp(x)$, $A \subseteq^* supp_a(x)$ and $\lim_{n \in A} \frac{c_{n+1}+1}{q_{n+1}} = 1$ in \mathbb{R} . Moreover, if A + 1 is *q*-bounded, then $A+1 \subseteq^* supp_a(x).$ (a2) If $A \cap supp(x)$ is finite then $\lim_{n \in A} \frac{c_{n+1}}{q_{n+1}} = 0$ in \mathbb{R} . Moreover, if A + 1 is *q*-bounded, then $(A + 1) \cap supp(x)$ is finite as well. (b) If A is q-divergent then $\lim_{n \in A} \frac{c_n}{q_n} = 0$ in \mathbb{T} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Some important observations regarding s-characterized subgroups

Borel Complexity and Cardinality [Dikranjan, Das, Bose, 2020]

- For any sequence of integers (a_n), the subgroup t^s_(a_n)(T) is an F_{σδ} (hence, Borel) subgroup of T containing t_(a_n)(T).
- For any arithmetic sequence (a_n) , we have $|t_{(a_n)}^s(\mathbb{T})| = \mathfrak{c}$.

• For any arithmetic sequence (a_n) , $t_{(a_n)}^s(\mathbb{T}) \supseteq t_{(a_n)}(\mathbb{T})$.

Characterization for being an *s*-torsion element [Das, Ghosh, 2021]

Let, (a_n) be an arithmetic sequence and $x \in \mathbb{T}$. Then x is a topologically s-torsion element (i.e., $x \in t^s_{(a_n)}(\mathbb{T})$) if and only if either d(supp(x)) = 0 or if $\overline{d}(supp(x)) > 0$, then for all $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$ the following holds:

(a) If A is q-bounded, then: (a1) If $A \subseteq^{s} supp(x)$, then $A + 1 \subseteq^{s} supp(x)$, $A \subseteq^{s} supp_{a}(x)$ and there exists $A' \subseteq A$ with $d(A \setminus A') = 0$ such that $\lim_{n\in A'}\frac{c_{n+1}+1}{q_{n+1}}=1 \text{ in } \mathbb{R}.$ Moreover, if A + 1 is *q*-bounded, then $A+1 \subseteq^{s} supp_{a}(x).$ (a2) If $d(A \cap supp(x)) = 0$, then there exists $A' \subseteq A$ with $d(A \setminus A') = 0$ such that $\lim_{n \in A'} \frac{c_{n+1}}{q_{n+1}} = 0$ in \mathbb{R} . Moreover, if A + 1 is *q*-bounded, then $d((A+1) \cap supp(x)) = 0$ as well. (b) If A is q-divergent, then $\lim_{n \in B} \frac{c_n}{q_n} = 0$ for some $B \subseteq A$ with $d(A \setminus B) = 0.$

Motivation I

A non-arithmetic sequence (ζ_n) was in fact considered in [Dikranjan, Kunen, 2007] for the sequence (n!) as follows:

 $1, 2, 4, 6, 12, 18, 24, \ldots, n!, 2 \cdot n!, 3 \cdot n!, \ldots, n \cdot n!, (n+1)!, \ldots$ (3)

Well known observation [Dikranjan, Kunen, 2007]

 $t_{(\zeta_n)}(\mathbb{T}) = \mathbb{Q}/\mathbb{Z}$, i.e., $t_{(\zeta_n)}(\mathbb{T})$ coincides with the torsion subgroup of \mathbb{T} .

Open Problem 1 [Dikranjan, Das, Bose, 2020]

Compute $t^s_{(\zeta_p)}(\mathbb{T})$. Is it countable? Is it distinct from \mathbb{Q}/\mathbb{Z} ?

Motivation II

Taking inspiration from the construction (3), we define the following general class of non-arithmetic sequences of integers for an arithmetic sequence (a_n) .

Definition of (d_n)

Let (d_n) be an increasing sequence of integers formed by the elements of the set,

$$\{ra_k : 1 \le r < b_{k+1}\}.$$
 (4)

Note that for $a_n = n!$ corresponding non-arithmetic sequence (d_n) coincides with the sequence (ζ_n) .

Literature Review and Problem Formulation

Motivation III

Problem formulation

Let (a_n) be an arithmetic sequence. Describe the subgroup $t_{(d_n)}(\mathbb{T})$ and $t_{(d_n)}^s(\mathbb{T})$.

Our Approach

2 Literature Review and Problem Formulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

3 Our Approach

4 Conclusion and Future Scope

└─Our Approach

Main Results related to $t_{(d_n)}(\mathbb{T})$ |

Theorem 1

For any arithmetic sequence (a_n) , $x \in t_{(d_n)}(\mathbb{T})$ if and only if $supp_{(a_n)}(x)$ is finite.

Corollary 1A

For any arithmetic sequence (a_n) , the following holds:

(i)
$$t_{(d_n)}(\mathbb{T}) = \bigcup_{n=1}^{\infty} \langle \frac{1}{a_n} \rangle.$$

t_(d_n)(T) is countable. In particular, t_(d_n)(T) is an F_σ subgroup of T.

└─Our Approach

Main Results related to $t_{(d_n)}(\mathbb{T})$ II

Corollary 1B

For an arithmetic sequence of integers (a_n) the following conditions are equivalent:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i)
$$(a_n)$$
 is not *b*-bounded.
(ii) $|t_{(a_n)}(\mathbb{T})| = \mathfrak{c}$.
(iii) $t_{(a_n)}(\mathbb{T}) \neq t_{(d_n)}(\mathbb{T})$.
(iv) $|t_{(a_n)}(\mathbb{T}) \setminus t_{(d_n)}(\mathbb{T})| = \mathfrak{c}$.
(v) $t_{(a_n)}(\mathbb{T})$ is not torsion.

└─Our Approach

Main Results related to $t_{(d_n)}(\mathbb{T})$ III

Theorem 2

For any arithmetic sequence (a_n) ,

$$t_{(d_n)}(\mathbb{T}) = t_{(a_n)}(\mathbb{T}) \cap \mathbb{Q}/\mathbb{Z} = t(t_{(a_n)}(\mathbb{T})).$$

For an arithmetic sequence of integers (a_n) , we write

- $n_p(\underline{a}) = \infty$ precisely when *p* appears as divisor of b_n for infinitely many *n*
- $n_p(\underline{a}) = 0$ precisely when p does not divide b_n for any n.

Corollary 2A

For any arithmetic sequence (a_n) , the subgroup $t_{(d_n)}(\mathbb{T})$ is divisible if and only if $n_p(\underline{a}) = 0$ or ∞ for each $p \in \mathbb{P}$.

ロン・ロシ・ビッ・ビッ・ビー・シャン

└─Our Approach

Main Results related to $t_{(d_n)}^{s}(\mathbb{T})$ I

Theorem 3

Let
$$(a_n)$$
 be an arithmetic sequence such that for each $m \in \mathbb{N}$,

$$\lim_{n \to \infty} \frac{\sum\limits_{i=0}^{m-1} (b_{n-i}-1)}{\sum\limits_{i=1}^{n} (b_i-1)} = 0. \text{ Then } |t^s_{(d_n)}(\mathbb{T})| = \mathfrak{c}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Solution of Problem 1

Let
$$(\zeta_n)$$
 be the sequence defined in Eq (3). Then $|t^s_{(\zeta_n)}(\mathbb{T})| = \mathfrak{c}.$

Conclusion and Future Scope

2 Literature Review and Problem Formulation

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3 Our Approach

4 Conclusion and Future Scope

Conclusion and Future Scope

Some Open Problems

Problem 1A

For any arithmetic sequence of integers (a_n), compute cardinality of the subgroup t^s_(d_n)(T).

Problem 1B

• Characterize the elements of the subgroup $t^s_{(d_n)}(\mathbb{T})$ solely based on their support.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Conclusion and Future Scope

Reference I

- D. L. Armacost, The structure of locally compact abelian groups, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York 68 (1981).
- [2] J. Braconnier, Sur les groupes topologiques primaries, C. R. Acad. Sci. Paris, 218 (1944), 304–305.
- P. Das, A. Ghosh, Solution of a general version of Armacost's problem on topologically torsion elements, Acta Math. Hungar., 164(1) (2021), 243–264.
- [4] D. Dikranjan, K. Kunen, Characterizing countable subgroups of compact abelian groups, J. Pure Appl. Algebra 208 (2007), 285–291.

Conclusion and Future Scope

Reference II

- [5] D. Dikranjan, P. Das, K. Bose, Statistically characterized subgroups of the circle, Fund. Math., 249 (2020), 185–209.
- [6] D. Dikranjan, D. Impieri, Topologically torsion elements of the circle group, Commun. Algebra, 42 (2014), 600–614.
- [7] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.

Conclusion and Future Scope

Thank you for your attention

(ロ)、(型)、(E)、(E)、 E) の(の)