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Background

An element x of an abelian group G is torsion if there
exists k ∈ N such that kx = 0.

Similarly, an element x of an abelian topological group G
is [Braconnier, 1944]:

(i) topologically torsion if n!x → 0;
(ii) topologically p-torsion, for a prime p, if pnx → 0.

Consider the subgroups [Armacost, 1981]

Tp = {x ∈ T : pnx → 0} and T! = {x ∈ T : n!x → 0}.

Tp is actually the Prufer group [Armacost] while the
characterization of T! was obtained by [Borel, 1991]
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Characterized subgroup

Definition

[for example see Dikranjan, Impieri, 2014] Let (an) be a
sequence of integers, the subgroup

t(an)(T) := {x ∈ T : anx → 0 in T}

of T is called a characterized (by (an)) subgroup of T.

Arithmetic Sequence

A sequence of positive integers (an) is called an arithmetic
sequence if

1 < a1 < a2 < a3 < . . . < an < . . . and an|an+1

for every n ∈ N.
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Statistical convergence

For A ⊆ N, the upper and lower natural density of A is defined
by

d(A) = lim inf
n→∞

|A ∩ [1, n]|
n

and d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

.

(1)
We say that d(A) exists if d(A) = d(A).

Definition [Fast, Steinhaus, 1951]

A sequence (xn) in T is said to converge to an x0 ∈ T
statistically if for any ε > 0, d({n ∈ N : ‖xn − x0‖ ≥ ε}) = 0.
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Statistically characterized subgroups

s-torsion element

[Dikranjan, Das, Bose, 2020] Let (an) be a sequence of
integers. An element x in T is called topologically s-torsion
element if anx → 0 s-statistically in T.

s-characterized Subgroup [Dikranjan, Das, Bose, 2020]

Let (an) be a sequence of integers, the subgroup

ts(an)(T) := {x ∈ T : anx → 0 statistically in T}

of T is called an s-characterized (by (an)) subgroup of T.
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Fact

[Dikranjan, Impieri, 2014] For any arithmetic sequence (an)
and x ∈ T, we can build a unique sequence of integers (cn),
where 0 ≤ cn < qn, such that

x =
∞∑
n=1

cn
an

(2)

and cn < qn − 1 for infinitely many n.
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Support

[Dikranjan, Impieri, 2014] For x ∈ T with canonical
representation (2), we define

supp(x) = {n ∈ N : cn 6= 0};
suppq(x) = {n ∈ N : cn = qn − 1}.

Clearly suppq(x) ⊆ supp(x).

For two subsets A,B of N, we will write A ⊆s B if
d(A \ B) = 0 and A =s B if d(A4B) = 0.
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Some important observations regarding characterized
subgroups [Dikranjan, Impieri, 2014]

Borel Complexity

For any sequence of integers (an), the subgroup t(an)(T) is an
Fσδ (hence, Borel) subgroup of T.

Cardinality

For an arithmetic sequence (an), the subgroup t(an)(T) is
countable if and only if the sequence of ratios (an+1

an
) is

bounded.
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Characterization for being a topologically torsion element

Let, (an) be an arithmetic sequence and x ∈ T. Then x is a
topologically torsion element (i.e., x ∈ t(an)(T)) if and only if
either supp(x) is finite or if supp(x) is infinite then for all
infinite A ⊆ N the following holds:
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(a) If A is q-bounded, then:

(a1) If A ⊆∗ supp(x), then A + 1 ⊆∗ supp(x), A ⊆∗ suppq(x)

and lim
n∈A

cn+1+1
qn+1

= 1 in R.

Moreover, if A + 1 is q-bounded, then
A + 1 ⊆∗ suppq(x).

(a2) If A ∩ supp(x) is finite then lim
n∈A

cn+1

qn+1
= 0 in R.

Moreover, if A + 1 is q-bounded, then (A + 1) ∩ supp(x)
is finite as well.

(b) If A is q-divergent then lim
n∈A

cn
qn

= 0 in T.
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Some important observations regarding s-characterized
subgroups

Borel Complexity and Cardinality [Dikranjan, Das, Bose, 2020]

• For any sequence of integers (an), the subgroup ts(an)(T) is

an Fσδ (hence, Borel) subgroup of T containing t(an)(T).

• For any arithmetic sequence (an), we have |ts(an)(T)| = c.

• For any arithmetic sequence (an), ts(an)(T) ) t(an)(T).
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Characterization for being an s-torsion element [Das, Ghosh,
2021]

Let, (an) be an arithmetic sequence and x ∈ T. Then x is a
topologically s-torsion element (i.e., x ∈ ts(an)(T)) if and only if

either d(supp(x)) = 0 or if d(supp(x)) > 0, then for all
A ⊆ N with d(A) > 0 the following holds:
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(a) If A is q-bounded, then:

(a1) If A ⊆s supp(x), then A + 1 ⊆s supp(x), A ⊆s suppq(x)
and there exists A′ ⊆ A with d(A \ A′) = 0 such that
lim
n∈A′

cn+1+1
qn+1

= 1 in R.

Moreover, if A + 1 is q-bounded, then
A + 1 ⊆s suppq(x).

(a2) If d(A ∩ supp(x)) = 0, then there exists A′ ⊆ A with
d(A \ A′) = 0 such that lim

n∈A′
cn+1

qn+1
= 0 in R.

Moreover, if A + 1 is q-bounded, then
d((A + 1) ∩ supp(x)) = 0 as well.

(b) If A is q-divergent, then lim
n∈B

cn
qn

= 0 for some B ⊆ A with

d(A \ B) = 0.
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Motivation I

A non-arithmetic sequence (ζn) was in fact considered in
[Dikranjan, Kunen, 2007] for the sequence (n!) as follows:

1, 2, 4, 6, 12, 18, 24, . . . , n!, 2·n!, 3·n!, . . . , n·n!, (n+1)!, . . . (3)

Well known observation [Dikranjan, Kunen, 2007]

t(ζn)(T) = Q/Z, i.e., t(ζn)(T) coincides with the torsion
subgroup of T.

Open Problem 1 [Dikranjan, Das, Bose, 2020]

Compute ts(ζn)(T). Is it countable? Is it distinct from Q/Z?
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Motivation II

Taking inspiration from the construction (3), we define the
following general class of non-arithmetic sequences of integers
for an arithmetic sequence (an).

Definition of (dn)

Let (dn) be an increasing sequence of integers formed by the
elements of the set,

{rak : 1 ≤ r < bk+1}. (4)

Note that for an = n! corresponding non-arithmetic sequence
(dn) coincides with the sequence (ζn).
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Motivation III

Problem formulation

Let (an) be an arithmetic sequence. Describe the subgroup
t(dn)(T) and ts(dn)(T).
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Main Results related to t(dn)(T) I

Theorem 1

For any arithmetic sequence (an), x ∈ t(dn)(T) if and only if
supp(an)(x) is finite.

Corollary 1A

For any arithmetic sequence (an), the following holds:

(i) t(dn)(T) =
∞⋃
n=1

〈
1
an

〉
.

(ii) t(dn)(T) is countable. In particular, t(dn)(T) is an Fσ

subgroup of T.
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Main Results related to t(dn)(T) II

Corollary 1B

For an arithmetic sequence of integers (an) the following
conditions are equivalent:

(i) (an) is not b-bounded.

(ii) |t(an)(T)| = c.

(iii) t(an)(T) 6= t(dn)(T).

(iv) |t(an)(T) \ t(dn)(T)| = c.

(v) t(an)(T) is not torsion.
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Main Results related to t(dn)(T) III
Theorem 2

For any arithmetic sequence (an),

t(dn)(T) = t(an)(T) ∩Q/Z = t
(
t(an)(T)

)
.

For an arithmetic sequence of integers (an), we write

• np(a) =∞ precisely when p appears as divisor of bn for
infinitely many n

• np(a) = 0 precisely when p does not divide bn for any n.

Corollary 2A

For any arithmetic sequence (an), the subgroup t(dn)(T) is
divisible if and only if np(a) = 0 or ∞ for each p ∈ P.



Characterized subgroup and its statistical variant related to some non-arithmetic sequences

Our Approach

Main Results related to ts(dn)(T) I

Theorem 3

Let (an) be an arithmetic sequence such that for each m ∈ N,

lim
n→∞

m−1∑
i=0

(bn−i−1)
n∑

i=1
(bi−1)

= 0. Then |ts(dn)(T)| = c.

Solution of Problem 1

Let (ζn) be the sequence defined in Eq (3). Then
|ts(ζn)(T)| = c.



Characterized subgroup and its statistical variant related to some non-arithmetic sequences

Conclusion and Future Scope

Outline

1 Introduction and Background

2 Literature Review and Problem Formulation

3 Our Approach

4 Conclusion and Future Scope



Characterized subgroup and its statistical variant related to some non-arithmetic sequences

Conclusion and Future Scope

Some Open Problems

Problem 1A

For any arithmetic sequence of integers (an), compute
cardinality of the subgroup ts(dn)(T).

Problem 1B

Characterize the elements of the subgroup ts(dn)(T) solely
based on their support.
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