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Free Topological Groups

Set X. Free group on X
F(X) = all reduced words x±1

1 x±1
2 . . . x±1

n ,
with natural product and inverse.

Every function f : X → G, where G a group,
has canonical extension to a homomorphism Ff : F(X) → G,
Ff(x±1

1 x±2
2 . . . x±1

n ) = f(x1)±1f(x2)±1 . . . f(xn)±1.

Space X. Free topological group on X is F(X)
with coarsest topological group topology
making Ff continuous

for all continuous f : X → G, where G is a topological group.
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Topology of Free Topological Groups

Let U = (Un)n be such that Un is an open cover of Xn.
Let Un(U) = {x−ϵn

n . . . x−ϵ1
1 y ϵ1

1 . . . y ϵn
n :

(x1, . . . , xn), (y1, . . . , yn) ∈ U ∈ Un, ϵi = ±1}.
Let U(U) =

∪
n
∪

σ∈Sn Uσ(1)(U)Uσ(2)(U) . . .Uσ(n)(U).

Theorem (Tkachenko)
The collection of all U(U) as above

is a neighborhood base for the identity 1 in F(X).

Lemma
The natural maps πn : Xn × {±1}n → F(X) are continuous.
Their images cover F(X).

X embeds as a closed set in F(X).
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Diversity of Free Topological Groups

Theorem (Ward)
There are c-many metric continua whose free topological
groups are pairwise non-topologically isomorphic.

Example
F(R) and F(P) are not homeomorphic.

Idea:
(1) Relate ‘shape’ of compact covers of X and F(X).
(2) Show there are many shapes of

compact covers of separable metrizable spaces.

Theorem
There are 2c-many separable metrizable spaces whose free
topological groups are pairwise non-homeomorphic.
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P-Ordered Compact Covers

Directed set P. Space X.

A compact cover KP = {Kp : p ∈ P} of X is P-ordered
if p ≤ p′ implies Kp ⊆ Kp′ .

Observe: ω-ordered compact cover iff σ-compact.

Three drawbacks:
• Difficult to make comparisons
• External not internal definition
• Miss important features
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Directed Set Pairs

P - directed set, and P′ any subset. Consider the pair (P′,P).

Subset C of P is cofinal for P′ (in P) if
for every p′ ∈ P′ there is c from C such that c ≥ p′.

Space X - natural pairs (X,K(X)) and (F(X),K(X)),

where
K(X) = all compact subsets of X ordered by ⊆,
F(X) = all finite subsets of X, and
the ‘X’ in (X,K(X)) means the singletons of X.

Observe -
the cofinal sets for (X,K(X))

are precisely the compact covers of X.
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(Relative) TukeyOrder

To compare two pairs, say (P′,P) and (Q′,Q)…

write (P′,P) ≥T (Q′,Q),
and say ‘(P′,P) Tukey quotients to (Q′,Q)’

if and only if there is a map ϕ : P → Q which takes
subsets of P cofinal for P′ to subsets of Q cofinal for Q′.

If (P′,P) ≥T (Q′,Q) and (Q′,Q) ≥T (P′,P) then the pairs are
said to be Tukey equivalent, denoted (P′,P) =T (Q′,Q).

Abbreviate (P,P) by P.
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When (X,K(X)) ≥T (Y,K(Y))

(X,K(X)) ≥T (Y,K(Y))

⇐⇒ ∃ ϕ : K(X) → K(Y)
taking compact covers to compact covers

⇐⇒ ∃ order-preserving ϕ : K(X) → K(Y)
taking compact covers to compact covers

⇐⇒ ∃ order-preserving ϕ : K(X) → K(Y)
such that ϕ(X) is a (compact) cover of Y.

When Q = K(Y) then (P′,P) ≥T (Q′,Q)
iff ∃ ϕ : P → K(Y) which is

order-preserving and ϕ(P′) cofinal for Q′ in K(Y).

X has a P-ordered compact cover if and only if P ≥T (X,K(X)).
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Initial Structure of (M,K(M)) M separable metrizable

1

compact

ω

σ-compact

ωω
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Menger Sets

A space is Menger if
for every sequence of open covers, (Un)n,
one can select finite Vn ⊆ Un

so that their union,
∪

n Vn, cover.

A space is strong Menger if every finite power is Menger.

• σ-compact spaces are strong Menger,
• (ZFC) ∃ non-σ-compact strong Menger subsets of R.
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If (M,K(M)) ̸≥T ω
ω thenMMenger

Take open covers (Un)n∈ω. M is Lindelöf - Un = {Un
m : m ∈ ω}.

For x in M define fx ∈ ωω by fx(n) = min{m : x ∈
∪m

i=0 Un
m}.

Define ϕ′ : M → ωω by ϕ′(x) = fx.

Take any compact K ⊆ M. We show ϕ′(K) is bounded in ωω.
To see this note that for each n, Un covers K, so we can pick
f(n) = m such that {Un

0, . . . ,Un
m} cover K. Now ϕ′(K) ≤ f.

So can extend ϕ′ to an order-preserving map K(M) into ωω.

Since (M,K(M)) ̸≥T ω
ω we see that ϕ′(M) is not cofinal in ωω.

So ∃ f such that ∀ x in M there is an nx so that fx(nx) < f(nx).

For each n let Vn = {Un
0, . . . ,Un

f(n)}, a finite ⊆ of Un.

We complete the proof by showing
∪

n
∪
Vn covers.

Well take any x in M, then fx(nx) < f(nx), so x ∈ Un
fx(nx)

∈ Vnx .
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If (M,K(M)) ≥T ω
ω thenM notMenger

Theorem
Let M be separable metrizable. Then:

(1) (M,K(M)) ̸≥T ω
ω ⇒ M is Menger, and

(2) (F(M),K(M)) ̸≥T ω
ω ⇒ M is strong Menger.

⋆ ωω =T (ω
ω,K(ωω)) ⋆ ωω is not Menger

Lemma
Let M and N be separable metrizable spaces.
(1) (M,K(M)) ≥T (N,K(N)), M Menger ⇒ N is also Menger.
(2) (F(M),K(M)) ≥T (F(N),K(N)) and M is strong Menger

⇒ N is strong Menger.

⋆ If (M,K(M)) ≥T (N,K(N)) then can make N from M ‘nicely’

Question Does theorem hold for all Lindelöf spaces?
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Question Does theorem hold for all Lindelöf spaces?
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Initial Structure of (M,K(M))

1

compact

ω

σ-compact

ωω

[Christensen] analytic

Menger

not Menger
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Initial Structure of (F(M),K(M))

1

compact

ω

σ-compact

ωω

[Christensen] analytic

strong Menger

not strong Menger

Menger not strong Menger
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Cofinal Structure of (M,K(M)) and (F(M),K(M))

1

compact

ω

σ-compact

ωω

[Christensen] analytic

2c antichain

c+ w.o chain
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Counting Tukey Types

Theorem
There is a 2c-sized family, M, of separable metrizable spaces
such that
if M,N are distinct elements of M then
(M,K(M)) ̸≥T (N,K(N)) and (F(M),K(M)) ̸≥T (F(N),K(N)).

Theorem
If 2b > c then there is a family S of 2b-many strong Menger sets
such that
(F(M),K(M)) ̸=T (F(N),K(N)) for distinct M and N from S.
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Application to Free Topological Groups

Theorem
If X is not countably compact then

(F(X),K(X)) =T (F(F(X)),K(F(X))).

Example
There is a 2c-sized family,M of separable metrizable spaces
such that
if M,N are distinct elements of M then:

(1) F(M) does not embed as a closed set in F(N) and
(2) F(M) is not the continuous image of F(N).

Example
If 2b > c there is a 2b-sized family, S, of strong Menger sets
such that
if M and N are distinct elements of S

then F(M) and F(N) are not homeomorphic.
18



Thank you!
And please answer my questions :-)

• If X Lindelöf and (X,K(X)) ≥T ω
ω then is X not Menger?

• (ZFC) Are there at least 2b-many Tukey inequivalent
(F(M),K(M)) pairs where M is strong Menger?
Are there at least 2d-many Tukey inequivalent (M,K(M))
pairs where M is Menger?

• (ZFC) Is 2d an upper bound on the number of Tukey
inequivalent (M,K(M)) pairs where M is Menger?

• Is it consistent that there are strictly fewer, up to Tukey
equivalence, pairs (F(M),K(M)) where M is strong
Menger than (M,K(M)) pairs where M is Menger?

The Shape of Compact Covers by Feng & Gartside (arxiv:2401.00817) JSL (to appear)

Also see: Menger and consonant sets in the Sacks model
by Haberl, Szewczak & Zdomskyy (arxiv:2406.05457)
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