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Space X. Free topological group on Xis F(X)
with coarsest topological group topology
making Ff continuous
for all continuous f: X — G, where G is a topological group.



I Topology of Free Topological Groups

Let U = (Un)n be such that U, is an open cover of X".
Let Up(U) = {x, " ... x7yst ...y

(Xl,.. ),(yl,...,yn)Eueun,ﬁj::t].}.
Let U(U) = Uy U es, Un(t)(0)Un(@)(U) . .. Us(ny (D).

Theorem (Tkachenko)

The collection of all U(U) as above
is a neighborhood base for the identity 1 in F(X).

Lemma
The natural maps m, : X" x {£1}" — F(X) are continuous.

Their images cover F(X).

X embeds as a closed set in F(X).
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I Diversity of Free Topological Groups

Theorem (Ward)

There are c-many metric continua whose free topological
groups are pairwise non-topologically isomorphic.

Example
F(R) and F(IP) are not homeomorphic.

Idea:
(1) Relate ‘shape’ of compact covers of X and F(X).

(2) Show there are many shapes of
compact covers of separable metrizable spaces.

Theorem
There are 2°-many separable metrizable spaces whose free
topological groups are pairwise non-homeomorphic.
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Directed set P. Space X.
A compact cover Kp = {Kp : p € P} of Xis P-ordered
if p < p’implies K, C K.

Observe: w-ordered compact cover iff e-compact.



I P-Ordered Compact Covers

Directed set P. Space X.
A compact cover Kp = {Kp : p € P} of Xis P-ordered
if p < p’implies K, C K.

Observe: w-ordered compact cover iff e-compact.

Three drawbacks:
¢ Difficult to make comparisons
e External not internal definition
e Miss important features
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P - directed set, and P’ any subset. Consider the pair (P, P).

Subset C of P is cofinal for P’ (in P) if
for every p’ € P’ there is c from C such thatc > p'.

Space X - natural pairs (X, (X)) and (F(X), (X)),
where
K(X) = all compact subsets of X ordered by C,
F(X) = all finite subsets of X, and
the ‘X' in (X, (X)) means the singletons of X.

Observe -

the cofinal sets for (X, K(X))
are precisely the compact covers of X.
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I (Relative) Tukey Order

To compare two pairs, say (P, P) and (@', Q)...
write (P, P) >7 (Q', Q),
and say ‘(P’, P) Tukey quotients to (Q’, Q)’
if and only if thereis a map ¢ : P — Q which takes
subsets of P cofinal for P’ to subsets of Q cofinal for Q'.

If (P,P) >r (Q,Q) and (Q', Q) >r (P', P) then the pairs are
said to be Tukey equivalent, denoted (P, P) =1 (Q’, Q).

Abbreviate (P, P) by P.
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I When (X, K(X) =7 (Y.K(Y))

(X, (X)) =7 (Y, K(Y))

<~ J¢: KX) — K(Y)
taking compact covers to compact covers

<= Jorder-preserving ¢ : £(X) — K(Y)
taking compact covers to compact covers

<= 3Jorder-preserving ¢ : K(X) — K(Y)
such that ¢(X) is a (compact) cover of V.

When Q = K£(Y) then (P,P) >7 (Q', Q)
iff 3¢ : P — K(Y) which is
order-preserving and ¢(P’) cofinal for Q' in (V).

X has a P-ordered compact cover if and only if P > (X, K£(X)).
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I Menger Sets

A space is Menger if
for every sequence of open covers, (Un)n,
one can select finite V, C U,

so that their union, | J,, Va, cover.

A space is strong Menger if every finite power is Menger.

e o-compact spaces are strong Menger,
e (ZFC) 3 non-o-compact strong Menger subsets of R.
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Take open covers (Un)new. Mis Lindeldf - U, = {Up, : m € w}.

For x in M define f, € w* by fx(n) = min{m : x € U, U%}.
Define ¢' : M — w” by ¢'(x) = fx.
Take any compact K C M. We show ¢/ (K) is bounded in w®.

To see this note that for each n, U, covers K, so we can pick
f(n) = msuch that {Uj, ..., Up,} cover K. Now ¢'(K) < f.

So can extend ¢’ to an order-preserving map K£(M) into w®.
Since (M, K(M)) #r w* we see that ¢/(M) is not cofinal in w®.
So 3 fsuch thatV x in M there is an ny so that fx(nx) < f(ny).
ForeachnletVy, ={U},..., U]’Z(n)}, a finite C of U,.

We complete the proof by showing |, | V» covers.
Well take any x in M, then fx(nx) < f(nx), sox € U}l(nx) € Vny-
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I If (M, IC(M)) >71 w” then M not Menger

Theorem
Let M be separable metrizable. Then:

(1) (M, KC(M)) 271w < M is Menger, and
(2) (FIM),K(M)) 21w < M is strong Menger.

* w¥ =71 (W, L(w¥)) * w*isnotMenger

Lemma
Let M and N be separable metrizable spaces.
(1) (M,KK(M)) >7r (N,KC(N)), M Menger = N is also Menger.
(2) (F(IM),KC(M)) >7 (F(N),K(N)) and M is strong Menger
= N js strong Menger.

* If (M,K(M)) >71 (N,K(N)) then can make N from M ‘nicely’

Question Does theorem hold for all Lindel6f spaces?
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I Cofinal Structure of (M, C(M)) and (F(M), KC(M))

compact  o-com w.o chain

[Christensen] analytic



I Counting Tukey Types

Theorem
There is a 2°-sized family, M, of separable metrizable spaces
such that

if M, N are distinct elements of M then

(M, (M) Zr (N, K(N)) and (F (M), K(M)) Zr (F(N), L(N)).

Theorem
If 2° > c then there is a family S of 2°-many strong Menger sets
such that

(F(M),IC(M)) #7 (F(N), IC(N)) for distinct M and N from S.

17



I Application to Free Topological Groups

Theorem
If X is not countably compact then

(F(X), KX)) =71 (F(FX)), K(F(X)))-
Example
There is a 2¢-sized family, M of separable metrizable spaces
such that
if M, N are distinct elements of M then:

(1) F(M) does not embed as a closed set in F(N) and
(2) F(M) is not the continuous image of F(N).

Example

If 2° > c there is a 2°-sized family, S, of strong Menger sets
such that
if M and N are distinct elements of S
then F(M) and F(N) are not homeomorphic.
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| Thank you!

And please answer my questions :-)

e If X Lindel6f and (X, (X)) >r w® then is X not Menger?

e (ZFC) Are there at least 2°-many Tukey inequivalent
(F(M),KC(M)) pairs where M is strong Menger?
Are there at least 2°-many Tukey inequivalent (M, K(M))
pairs where M is Menger?

e (ZFC) Is 2° an upper bound on the number of Tukey
inequivalent (M, K(M)) pairs where M is Menger?

e Is it consistent that there are strictly fewer, up to Tukey

equivalence, pairs (F(M), K(M)) where M is strong
Menger than (M, K(M)) pairs where M is Menger?

The Shape of Compact Covers by Feng & Gartside (arxiv:2401.00817) JSL (to appear)
Also see: Menger and consonant sets in the Sacks model
by Haberl, Szewczak & Zdomskyy (arxiv:2406.05457)



