The Shape of Compact Covers

Paul Gartside

joint work with Ziqin Feng

Summer Topology Conference - Coimbra — July 4-8, 2024

Motivation - free topological groups 🛨 Background - Tukey order ★ Initial Structure 🛨 Cofinal Structure & Counting ★ Conclusion

Free Topological Groups

Set X. Free group on X F(X) =all reduced words $x_1^{\pm 1}x_2^{\pm 1} \dots x_n^{\pm 1}$, with natural product and inverse.

Every function $f : X \to G$, where G a group, has canonical extension to a homomorphism $Ff : F(X) \to G$, $Ff(x_1^{\pm 1}x_2^{\pm 2}...x_n^{\pm 1}) = f(x_1)^{\pm 1}f(x_2)^{\pm 1}...f(x_n)^{\pm 1}$.

Free Topological Groups

Set *X*. Free group on *X* F(X) =all reduced words $x_1^{\pm 1}x_2^{\pm 1} \dots x_n^{\pm 1}$, with natural product and inverse.

Every function $f : X \to G$, where G a group, has canonical extension to a homomorphism $Ff : F(X) \to G$, $Ff(x_1^{\pm 1}x_2^{\pm 2}...x_n^{\pm 1}) = f(x_1)^{\pm 1}f(x_2)^{\pm 1}...f(x_n)^{\pm 1}.$

Space *X*. Free topological group on *X* is F(X)with coarsest topological group topology making *Ff* continuous for all continuous $f: X \rightarrow G$, where *G* is a topological group.

Topology of Free Topological Groups

Let $\mathbb{U} = (\mathcal{U}_n)_n$ be such that \mathcal{U}_n is an open cover of X^n . Let $U_n(\mathbb{U}) = \{x_n^{-\epsilon_n} \dots x_1^{-\epsilon_1} y_1^{\epsilon_1} \dots y_n^{\epsilon_n} : (x_1, \dots, x_n), (y_1, \dots, y_n) \in U \in \mathcal{U}_n, \epsilon_i = \pm 1\}.$ Let $U(\mathbb{U}) = \bigcup_n \bigcup_{\sigma \in S_n} U_{\sigma(1)}(\mathbb{U}) U_{\sigma(2)}(\mathbb{U}) \dots U_{\sigma(n)}(\mathbb{U}).$

Theorem (Tkachenko)

The collection of all $U(\mathbb{U})$ as above is a neighborhood base for the identity **1** in F(X).

Lemma The natural maps $\pi_n : X^n \times {\pm 1}^n \to F(X)$ are continuous. Their images cover F(X).

X embeds as a closed set in F(X).

Diversity of Free Topological Groups

Theorem (Ward)

There are *c*-many metric continua whose free topological groups are pairwise non-topologically isomorphic.

Diversity of Free Topological Groups

Theorem (Ward)

There are *c*-many metric continua whose free topological groups are pairwise non-topologically isomorphic.

Example

 $F(\mathbb{R})$ and $F(\mathbb{P})$ are not homeomorphic.

Theorem (Ward)

There are *c*-many metric continua whose free topological groups are pairwise non-topologically isomorphic.

Example

 $F(\mathbb{R})$ and $F(\mathbb{P})$ are not homeomorphic.

Idea:

(1) Relate 'shape' of compact covers of X and F(X).

(2) Show there are many shapes of compact covers of separable metrizable spaces.

Theorem (Ward)

There are *c*-many metric continua whose free topological groups are pairwise non-topologically isomorphic.

Example

 $F(\mathbb{R})$ and $F(\mathbb{P})$ are not homeomorphic.

Idea:

(1) Relate 'shape' of compact covers of X and F(X).

(2) Show there are many shapes of compact covers of separable metrizable spaces.

Theorem

There are 2^c-many separable metrizable spaces whose free topological groups are pairwise non-homeomorphic.

P-Ordered Compact Covers

Directed set *P*. Space *X*. A compact cover $\mathcal{K}_P = \{\mathcal{K}_p : p \in P\}$ of *X* is *P*-ordered if $p \leq p'$ implies $\mathcal{K}_p \subseteq \mathcal{K}_{p'}$.

Observe: ω -ordered compact cover iff σ -compact.

P-Ordered Compact Covers

Directed set *P*. Space *X*. A compact cover $\mathcal{K}_P = \{K_p : p \in P\}$ of *X* is *P*-ordered if $p \le p'$ implies $K_p \subseteq K_{p'}$.

Observe: ω -ordered compact cover iff σ -compact.

Three drawbacks:

- Difficult to make comparisons
- External not internal definition
- Miss important features

Directed Set Pairs

P - directed set, and *P'* any subset. Consider the pair (P', P).

Subset *C* of *P* is *cofinal* for *P'* (in *P*) if for every $p' \in P'$ there is *c* from *C* such that $c \ge p'$.

Directed Set Pairs

P - directed set, and *P'* any subset. Consider the pair (P', P).

Subset *C* of *P* is *cofinal* for *P'* (in *P*) if for every $p' \in P'$ there is *c* from *C* such that $c \ge p'$.

Space X - natural pairs $(X, \mathcal{K}(X))$ and $(\mathcal{F}(X), \mathcal{K}(X))$,

where

 $\mathcal{K}(X) =$ all compact subsets of *X* ordered by \subseteq , $\mathcal{F}(X) =$ all finite subsets of *X*, and the 'X' in (X, $\mathcal{K}(X)$) means the singletons of *X*.

Directed Set Pairs

P - directed set, and *P'* any subset. Consider the pair (P', P).

Subset *C* of *P* is *cofinal* for *P'* (in *P*) if for every $p' \in P'$ there is *c* from *C* such that $c \ge p'$.

Space X - natural pairs $(X, \mathcal{K}(X))$ and $(\mathcal{F}(X), \mathcal{K}(X))$,

where

 $\mathcal{K}(X) =$ all compact subsets of *X* ordered by \subseteq , $\mathcal{F}(X) =$ all finite subsets of *X*, and the 'X' in (X, $\mathcal{K}(X)$) means the singletons of *X*.

Observe -

the cofinal sets for $(X, \mathcal{K}(X))$

are precisely the compact covers of X.

(Relative) Tukey Order

To compare two pairs, say (P', P) and (Q', Q)... write $(P', P) \ge_T (Q', Q)$, and say '(P', P) Tukey quotients to (Q', Q)' if and only if there is a map $\phi : P \to Q$ which takes subsets of *P* cofinal for *P'* to subsets of *Q* cofinal for *Q'*.

(Relative) Tukey Order

To compare two pairs, say (P', P) and (Q', Q)... write $(P', P) \ge_T (Q', Q)$, and say '(P', P) Tukey quotients to (Q', Q)'if and only if there is a map $\phi : P \to Q$ which takes subsets of *P* cofinal for *P'* to subsets of *Q* cofinal for *Q'*.

If $(P', P) \ge_T (Q', Q)$ and $(Q', Q) \ge_T (P', P)$ then the pairs are said to be *Tukey equivalent*, denoted $(P', P) =_T (Q', Q)$.

Abbreviate (P, P) by P.

 $\begin{aligned} & (X, \mathcal{K}(X)) \geq_{T} (Y, \mathcal{K}(Y)) \\ & \iff \exists \phi : \mathcal{K}(X) \to \mathcal{K}(Y) \\ & \text{taking compact covers to compact covers} \end{aligned}$

 $\begin{array}{l} (X,\mathcal{K}(X)) \geq_T (Y,\mathcal{K}(Y)) \\ \iff \exists \ \phi: \mathcal{K}(X) \rightarrow \mathcal{K}(Y) \\ & \text{taking compact covers to compact covers} \\ \iff \exists \ \text{order-preserving} \ \phi: \mathcal{K}(X) \rightarrow \mathcal{K}(Y) \\ & \text{taking compact covers to compact covers} \end{array}$

 $\begin{aligned} & (X, \mathcal{K}(X)) \geq_T (Y, \mathcal{K}(Y)) \\ & \iff \exists \ \phi : \mathcal{K}(X) \to \mathcal{K}(Y) \\ & \text{taking compact covers to compact covers} \end{aligned}$

 $\iff \exists \text{ order-preserving } \phi : \mathcal{K}(X) \to K(Y)$ taking compact covers to compact covers

 $\iff \exists$ order-preserving $\phi : \mathcal{K}(X) \to \mathcal{K}(Y)$ such that $\phi(X)$ is a (compact) cover of Y.

 $\begin{aligned} & (X, \mathcal{K}(X)) \geq_T (Y, \mathcal{K}(Y)) \\ & \iff \exists \ \phi : \mathcal{K}(X) \to \mathcal{K}(Y) \\ & \text{taking compact covers to compact covers} \end{aligned}$

 $\iff \exists \text{ order-preserving } \phi : \mathcal{K}(X) \to K(Y)$ taking compact covers to compact covers

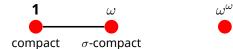
$$\iff \exists \text{ order-preserving } \phi : \mathcal{K}(X) \to \mathcal{K}(Y)$$

such that $\phi(X)$ is a (compact) cover of Y.

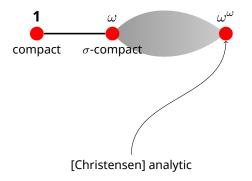
When
$$Q = \mathcal{K}(Y)$$
 then $(P', P) \ge_T (Q', Q)$
iff $\exists \phi : P \to \mathcal{K}(Y)$ which is
order-preserving and $\phi(P')$ cofinal for Q' in $\mathcal{K}(Y)$.

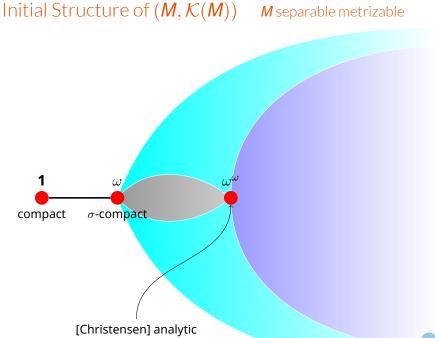
X has a *P*-ordered compact cover if and only if $P \ge_T (X, \mathcal{K}(X))$.

Initial Structure of $(M, \mathcal{K}(M))$ M separable metrizable



Initial Structure of $(M, \mathcal{K}(M))$ M separable metrizable





Menger Sets

A space is *Menger* if for every sequence of open covers, $(U_n)_n$, one can select finite $\mathcal{V}_n \subseteq \mathcal{U}_n$ so that their union, $\bigcup_n \mathcal{V}_n$, cover.

A space is strong Menger if every finite power is Menger.

- σ -compact spaces are strong Menger,
- (ZFC) \exists non- σ -compact strong Menger subsets of \mathbb{R} .

If $(\boldsymbol{M}, \mathcal{K}(\boldsymbol{M})) \geq_T \omega^{\omega}$ then \boldsymbol{M} Menger

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$.

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$.

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m \mathcal{U}_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} .

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} . To see this note that for each n, \mathcal{U}_n covers K, so we can pick f(n) = m such that $\{U_0^n, \ldots, U_m^n\}$ cover K. Now $\phi'(K) \leq f$.

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} . To see this note that for each n, \mathcal{U}_n covers K, so we can pick f(n) = m such that $\{U_0^n, \ldots, U_m^n\}$ cover K. Now $\phi'(K) \leq f$. So can extend ϕ' to an order-preserving map $\mathcal{K}(M)$ into ω^{ω} .

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} . To see this note that for each n, \mathcal{U}_n covers K, so we can pick f(n) = m such that $\{U_0^n, \ldots, U_m^n\}$ cover K. Now $\phi'(K) \leq f$. So can extend ϕ' to an order-preserving map $\mathcal{K}(M)$ into ω^{ω} . Since $(M, \mathcal{K}(M)) \not\geq_T \omega^{\omega}$ we see that $\phi'(M)$ is not cofinal in ω^{ω} .

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} . To see this note that for each n, \mathcal{U}_n covers K, so we can pick f(n) = m such that $\{U_0^n, \ldots, U_m^n\}$ cover K. Now $\phi'(K) \leq f$. So can extend ϕ' to an order-preserving map $\mathcal{K}(M)$ into ω^{ω} . Since $(M, \mathcal{K}(M)) \not\geq_T \omega^{\omega}$ we see that $\phi'(M)$ is not cofinal in ω^{ω} . So $\exists f$ such that $\forall x$ in M there is an n_x so that $f_x(n_x) < f(n_x)$.

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} . To see this note that for each n, \mathcal{U}_n covers K, so we can pick f(n) = m such that $\{U_0^n, \ldots, U_m^n\}$ cover K. Now $\phi'(K) \leq f$. So can extend ϕ' to an order-preserving map $\mathcal{K}(M)$ into ω^{ω} . Since $(M, \mathcal{K}(M)) \not\geq_T \omega^{\omega}$ we see that $\phi'(M)$ is not cofinal in ω^{ω} . So $\exists f$ such that $\forall x$ in M there is an n_x so that $f_x(n_x) < f(n_x)$. For each n let $\mathcal{V}_n = \{U_0^n, \ldots, U_{f(n)}^n\}$, a finite \subseteq of \mathcal{U}_n .

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} . To see this note that for each n, \mathcal{U}_n covers K, so we can pick f(n) = m such that $\{U_0^n, \ldots, U_m^n\}$ cover K. Now $\phi'(K) \leq f$. So can extend ϕ' to an order-preserving map $\mathcal{K}(M)$ into ω^{ω} . Since $(M, \mathcal{K}(M)) \not\geq_T \omega^{\omega}$ we see that $\phi'(M)$ is not cofinal in ω^{ω} . So $\exists f$ such that $\forall x$ in M there is an n_x so that $f_x(n_x) < f(n_x)$. For each *n* let $\mathcal{V}_n = \{U_0^n, \ldots, U_{f(n)}^n\}$, a finite \subseteq of \mathcal{U}_n . We complete the proof by showing $\bigcup_n \bigcup \mathcal{V}_n$ covers.

Take open covers $(\mathcal{U}_n)_{n \in \omega}$. *M* is Lindelöf - $\mathcal{U}_n = \{U_m^n : m \in \omega\}$. For *x* in *M* define $f_x \in \omega^{\omega}$ by $f_x(n) = \min\{m : x \in \bigcup_{i=0}^m U_m^n\}$. Define $\phi' : M \to \omega^{\omega}$ by $\phi'(x) = f_x$.

Take any compact $K \subseteq M$. We show $\phi'(K)$ is bounded in ω^{ω} . To see this note that for each n, \mathcal{U}_n covers K, so we can pick f(n) = m such that $\{U_0^n, \ldots, U_m^n\}$ cover K. Now $\phi'(K) \leq f$. So can extend ϕ' to an order-preserving map $\mathcal{K}(M)$ into ω^{ω} . Since $(M, \mathcal{K}(M)) \geq_T \omega^{\omega}$ we see that $\phi'(M)$ is not cofinal in ω^{ω} . So $\exists f$ such that $\forall x$ in M there is an n_x so that $f_x(n_x) < f(n_x)$. For each *n* let $\mathcal{V}_n = \{U_0^n, \ldots, U_{f(n)}^n\}$, a finite \subseteq of \mathcal{U}_n . We complete the proof by showing $\bigcup_n \bigcup \mathcal{V}_n$ covers. Well take any *x* in *M*, then $f_x(n_x) < f(n_x)$, so $x \in U^n_{f_x(n_x)} \in \mathcal{V}_{n_x}$.

Theorem Let *M* be separable metrizable. Then: (1) $(M, \mathcal{K}(M)) \geq_T \omega^{\omega} \Rightarrow M$ is Menger, and (2) $(\mathcal{F}(M), \mathcal{K}(M)) \geq_T \omega^{\omega} \Rightarrow M$ is strong Menger.

Theorem Let *M* be separable metrizable. Then: (1) $(M, \mathcal{K}(M)) \geq_T \omega^{\omega} \Leftrightarrow M$ is Menger, and

(2) $(\mathcal{F}(M), \mathcal{K}(M)) \geq_T \omega^{\omega} \Leftrightarrow M$ is strong Menger.

Question Does theorem hold for all Lindelöf spaces?

Theorem Let M be separable metrizable. Then:

(1) $(M, \mathcal{K}(M)) \not\geq_T \omega^{\omega} \Leftrightarrow M$ is Menger, and (2) $(\mathcal{F}(M), \mathcal{K}(M)) \not\geq_T \omega^{\omega} \Leftrightarrow M$ is strong Menger.

★ $\omega^{\omega} =_{\mathcal{T}} (\omega^{\omega}, \mathcal{K}(\omega^{\omega}))$ ★ ω^{ω} is not Menger

Lemma

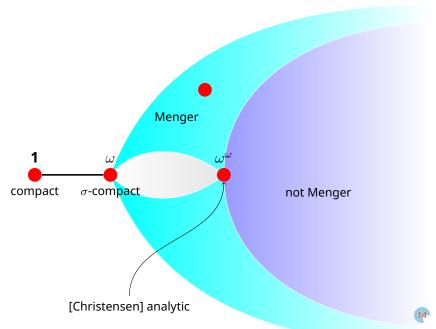
Let M and N be separable metrizable spaces.

(1) $(M, \mathcal{K}(M)) \ge_T (N, \mathcal{K}(N))$, M Menger $\Rightarrow N$ is also Menger. (2) $(\mathcal{F}(M), \mathcal{K}(M)) \ge_T (\mathcal{F}(N), \mathcal{K}(N))$ and M is strong Menger $\Rightarrow N$ is strong Menger.

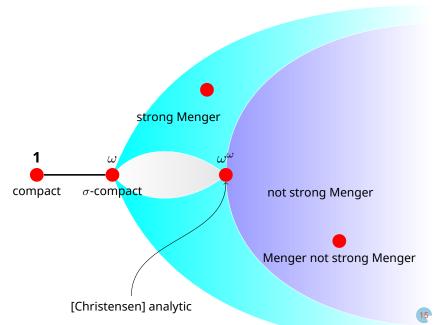
★ If $(M, \mathcal{K}(M)) \ge_T (N, \mathcal{K}(N))$ then can make *N* from *M* 'nicely'

Question Does theorem hold for all Lindelöf spaces?

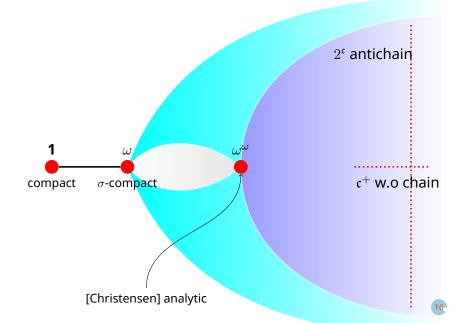
Initial Structure of $(M, \mathcal{K}(M))$



Initial Structure of $(\mathcal{F}(M), \mathcal{K}(M))$



Cofinal Structure of $(M, \mathcal{K}(M))$ and $(\mathcal{F}(M), \mathcal{K}(M))$



Counting Tukey Types

Theorem There is a 2^c-sized family, \mathcal{M} , of separable metrizable spaces such that if M, N are distinct elements of \mathcal{M} then $(M, \mathcal{K}(M)) \not\geq_T (N, \mathcal{K}(N))$ and $(\mathcal{F}(M), \mathcal{K}(M)) \not\geq_T (\mathcal{F}(N), \mathcal{K}(N))$.

Theorem

If $2^{\mathfrak{b}} > \mathfrak{c}$ then there is a family $\mathcal S$ of $2^{\mathfrak{b}}$ -many strong Menger sets such that

 $(\mathcal{F}(M), \mathcal{K}(M)) \neq_T (\mathcal{F}(N), \mathcal{K}(N))$ for distinct M and N from S.

Application to Free Topological Groups

Theorem If X is not countably compact then $(\mathcal{F}(X), \mathcal{K}(X)) =_T (\mathcal{F}(F(X)), \mathcal{K}(F(X))).$

Example

There is a $2^{\mathfrak{c}}\text{-sized}$ family, $\mathcal M$ of separable metrizable spaces such that

if M, N are distinct elements of \mathcal{M} then:

- (1) F(M) does not embed as a closed set in F(N) and
- (2) F(M) is not the continuous image of F(N).

Example

If $2^{\mathfrak{b}}>\mathfrak{c}$ there is a $2^{\mathfrak{b}}\text{-sized}$ family, $\mathcal{S},$ of strong Menger sets such that

if *M* and *N* are distinct elements of \mathcal{S}

then F(M) and F(N) are not homeomorphic.

Thank you! And please answer my questions :-)

- If *X* Lindelöf and $(X, \mathcal{K}(X)) \geq_T \omega^{\omega}$ then is *X* not Menger?
- (ZFC) Are there at least 2^b-many Tukey inequivalent
 (*F*(*M*), *K*(*M*)) pairs where *M* is strong Menger?
 Are there at least 2^b-many Tukey inequivalent (*M*, *K*(*M*))
 pairs where *M* is Menger?
- (ZFC) Is 2^a an upper bound on the number of Tukey inequivalent (*M*, *K*(*M*)) pairs where *M* is Menger?
- Is it consistent that there are strictly fewer, up to Tukey equivalence, pairs (*F*(*M*), *K*(*M*)) where *M* is strong Menger than (*M*, *K*(*M*)) pairs where *M* is Menger?

The Shape of Compact Covers by Feng & Gartside (arxiv:2401.00817) JSL (to appear) Also see: *Menger and consonant sets in the Sacks model*

by Haberl, Szewczak & Zdomskyy (arxiv:2406.05457)